DRAINAGE REPORT for ## 189 MAY ST, WORCESTER, MA Job #348-1876 Client #3368 September 14, 2021 # THOMPSON-LISTON ASSOCIATES, INC. Professional Engineers Professional Land Surveyors Erosion Control Specialists 51 Main Street, Post Office Box 570 Boy Iston, Massachusetts 01505-0570 Telephone 508-869-6151 FAX 508-869-6842 www.thompsonliston.com AMM 9/14/21 Professional Engineers Professional Land Surveyors Erosion Control Specialists 51 Main Street, Post Office Box 570 Boylston, Massachusetts 01505-0570 Telephone 508-869-6151 FAX 508-869-6342 www.thompsonliston.com ## **Drainage Report** New England Rehabilitation Services of Central Massachusetts, Inc. Proposed redevelopment of the site at 189 May Street Worcester, Massachusetts September 14, 2021 ### **Project Description** The site is located on the south-westerly side of May Street, south-easterly of Fairlawn Drive and north-westerly of Hadwen Arboretum at Clark University. The property is presently owned by New England Rehabilitation Services of Central Massachusetts, INC. It presently serves as a hospital. The Applicant, New England Rehabilitation Services of Central Massachusetts, Inc., proposes to construct an addition onto the existing north wing of the hospital with associated ambulance access bay, walkway and entryway for pedestrian use, and several new islands and parking reconfiguration in order to allow for safe and efficient flow of vehicle and pedestrian traffic. On the southerly side of the site, additional landscaped area and walkways are proposed leading to an existing gazebo. On the westerly side of the site, existing pavement is proposed to be removed in order to plant additional grass. This report compares the drainage conditions of the proposed development to the predevelopment conditions of the site. The predevelopment condition includes the most recent improvements that were made to the site in the 2004-2005 time frame, when the parking lot was expanded and .the drainage system was improved. Soils on this site are categorized on the United States Department of Agriculture (USDA) Web Soil Survey soil maps as being "Paxton fine sandy loam" soils with 3 to 8 percent slopes in most areas and 8 to 15 percent slopes in remaining areas. In actuality, the geotechnical borings show an underlying soils with fines in the range of 15% to 40%. As with some other hilltop sites in the area, the glacial till in these situations is very dense, and with the high percentage of fines is highly expansive with frost. The site soils are unsuitable for any type of infiltration systems. For the purpose of the drainage study, we have categorized the soils as hydrologic soil group "C" soils based on the soil maps and properties of the Paxton soils. ### Methodology In order to evaluate the existing and proposed hydrologic conditions of the site, we have employed the HydroCADTM stormwater modeling software, which emulates the United States Department of Agriculture, Soil Conservation Service (SCS) hydrograph method as outlined in Technical Release 20 (1982). We have used the SCS modified soil cover complex method of evaluating cover conditions and underlying soil features in developing runoff curve numbers (RCN), and have determined Times of Concentration (ToC), using the methods described in the SCS's National Engineering Handbook, Section 4, Hydrology (1985). Each watershed with its Area, RCN and ToC, is described as a "Subcatchment" in HydroCADTM. Drainage Report for Fairlawn Hospital 189 May Street, Worcester September 14, 2021 Page 2 HydroCAD™ uses the Storage-Indication method for routing flows from "Subcatchment" areas through "Reaches" and "Ponds." Reaches are overland flow paths, pipe segments, or stream segments. Ponds are areas that collect water, such as basins, ponds, or swales where outlet devices control outflow. Rainfall was determined from the maps in the National Oceanic and Atmospheric Administration (NOAA), <u>ATLAS 14 Point Precipitation Frequency Estimates</u> for the locus. The SCS's Type III Rainfall Distribution is used for these calculations and is described in SCS <u>Technical Release 55</u> (1986). The 2-, 10-, 25- and 100-year return frequency storms were studied with 24-hour rainfalls of 3.14, 4.87, 5.95 and 7.61 inches respectively. ### **Design Points** The design points for this report consist of the northerly pond that the swale leads into, the slope that runs westerly before the start of the swale, the catch basin on the driveway near the entrance to the northerly parking, and the abutting easterly parking lot that collects runoff from the slope near the gazebo. These locations were chosen because they are locations where runoff from the site ends up and they can be compared for pre- and post-development. Flows to the northerly pond are modeled as pond #1P in the pre- and post-development conditions. Flows to the westerly slope are modeled as Subcatchment 7 in the pre- and post-development conditions. Flows to the catch basin in the driveway are modeled as Pond 3 on the pre- and post-development conditions. Flows to the easterly abutting parking lot are modeled as Subcatchment 9 on the pre- and post-development conditions. ### Calculation Summary and Comparison of Flows: In all of the storms studied, the 2-, 10-, 25- and 100-year storms, the runoff leaving the site in the post-development condition will not exceed the peak runoff in the existing (pre-development) condition. The following table compares the pre- and post-development flows at the Design Points: Respectfully submitted, THOMPSON-LISTON ASSOCIATES, INC. Patrick .J. Healy, P.E. Project Manager / Civil Engineer Drainage Report for Fairlawn Hospital 189 May Street, Worcester September 14, 2021 Page 3 | ; | Runo | TABL
off Summaries | E A
for Storm Eve | nts | |---------------------|----------------|-----------------------|----------------------|-----------| | Design Point | 2-YR | 10-YR | 25-YR | 100-YR | | 1. Northerly | Pond | | | | | Pond 1P pre | 8.77 cfs | 15.21 cfs | 19.65 cfs | 26.47 cfs | | Pond 1P post | 8.77 | 15.09 | 19.61 | 26.47 | | 2. Catch Bas | in in Driveway | | | | | Reach 9R pre | 2.80 cfs | 4.65 cfs | 5.78 cfs | 7.52 cfs | | Reach 9R post | 2.67 | 4.50 | 5.64 | 7.37 | | 3. Abutting I | Easterly Lot | | | | | Reach 10R pre | 0.65 cfs | 1.58 cfs | 2.21 cfs | 3.23 cfs | | Reach 10R post 0.63 | | 1.54 | 2.16 | 3.15 | | 4. Westerly S | Slope | | | | | Reach 7R pre | 0.82 cfs | 1.57 cfs | 2.05 cfs | 2.80 cfs | | Reach 7R post | 0.82 | 1.57 | 2.05 | 2.80 | Professional Engineers Professional Land Surveyors Erosion Control Specialists 51 Main Street, Post Office Box 570 Boylston, Massachusetts 01505-0570 Telephone 508-869-6151 FAX 508-869-6842 www.thompsonliston.com ### Stormwater Standards Compliance Statement Fairlawn Hospital Addition and Renovation 189 May Street Worcester, Massachusetts ### **September 14, 2021** A portion of the existing building entrance canopy and paved areas will be removed and replace dwith a building addition that will serve as the new main entrance and ambulance entrance to the hospital, as well as new rooms on the upper floors. The renovations and expansion will not result in additional patient beds or uses, but will convert several multi-patient rooms, and new rooms to private or semi-private rooms. Portions of the lot will be redeveloped to construct the addition, relocate accessible parking spaces and walks, and improve emergency vehicle access. As a redevelopment project, the project will comply with the Massachusetts DEP Stormwater Standards only to the extent practicable, as described below. Where a particular Standard does not apply to the project, an explanation is provided. Each statement either describes compliance with those Standards that are applicable to the scope of work proposed. ### STANDARD 1 – NO NEW UNTREATED DISCHARGES Runoff from the site includes runoff from roofs, paved areas, and landscaped areas. Stormwater runoff from existing paved driveways and roofs currently runs off in four separate directions, which we evaluated and for which we designed mitigating measures to limit the postdevelopment runoff to or below the predevelopment levels. Much of the area of redevelopment flows to two drainage systems, to the existing parking lot drainage system toward an existing detention basin to the north, and to catch basins in the main driveway which connection downslope toward May street through easements on the adjacent property to the east. To the southeast and southwest some areas contribute overland flow to adjacent properties. In the proposed condition, the runoff from impervious driveways will generally slope and runoff it the same directions. The roof runoff of the new building addition and patient drop off canopy will be connected by pipes to the existing parking lot drainage system to the north. The piped drainage system will then be retrofitted to constrict the pipe leading out the existing surface detention basin, in order to avoid divert the discharge through a subsurface detention/infiltration BMP. Although there is a net increase of 7,013 sq. ft. of impervious area, the actual peak rate and volume of runoff will be less in the proposed condition. No new untreated discharges are proposed. ### STANDARD 2 – PEAK RATE ATTENUATION As described in the report and hydrologic calculations, the peak rate of runoff will be mitigated for the 2, 10, 25, and 100-year storms. so there is no contribution to off-site flooding. ### STANDARD 3 – RECHARGE Though the redevelopment results in a modest increase to impervious cover, and equivalent area of impervious parking lot will be removed on the west edge of the parking lot, so the project does not result in an increase in impervious cover. Soil types present on the site are identified as Paxton fine sandy loam, which would normally be classified as hydrologic group C soil. However, the soil borings in the area of development indicate dense glacial till
with inordinate fine content, between Stormwater Standards Compliance 189 May Street, Worcester, MA September 14, 2021 Page 2 25%-40% passing the #200 sieve. This type of soil is unsuitable for any type of infiltration systems whether open air or subsurface. As such, we will not be proposing any recharge. ### STANDARD 4 – WATER QUALITY Standard 4 is also based up on the amount of new impervious surfaces being created on a site. As stated in the prior section, no increase in the impervious cover is proposed by this project. In this case, all runoff from the altered impervious parking area and walks will continue to be directed to deep sump catch basins and walks. Once small area of the fire lane will be collected into a trench drain with a sump, and will be piped around the ambulance bay. The roof runoff is considered clean and is not subject to the Standard 4 requirements. ### STANDARD 5 – LUHPPLs Site does not fall into this category. ### STANDARD 6 – CRITICAL AREAS Site is not in or near a critical area as defined in the DEP Stormwater Handbook. #### STANDARD 7 – REDEVELOPMENT As a redevelopment site, the modest increase in impervious cover is mitigated through the reduction of paved surface in another area of the site. The redevelopment of the site will represent an improvement in stormwater management in terms of reduction of the peak rate of flow through additional mitigation. In addition, there will be an O&M plan in place for improved long term water quality and protection of stormwater infrastructure. ### STANDARD 8 - CONSTRUCTION PERIOD CONTROLS An Erosion and Sedimentation Control Plan has been developed, and is shown on the plans. Details of the BMPs are shown on the Detail Sheet of the Site Plan. ### STANDARD 9 – OPERATION AND MAINTENANCE PLAN An Operation and Maintenance Program covering the construction period and post-construction period maintenance and inspection requirements of the proposed stormwater structures has been written and is included herewith. #### STANDARD 10 – PROHIBITION OF ILLICIT DISCHARGES Provisions will be made to prevent illicit non-stormwater discharges to waters of the Commonwealth. The owner is cognizant of the effects upon the environment of improper disposal of wastewater, process waste, raw materials, toxic and hazardous substances, oil and grease, and seeks to prevent damage to the environment. Such substances if present shall be stored in covered containers or within parked vehicles on the site and will not be exposed to rainfall. Spill kits will be stored on site and replenished as necessary to prevent the migration of potential contaminants. Prepared by: Patrick J. Healy, P.E. THOMPSON-LISTON ASSOCIATES, INC ### Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program ## **Checklist for Stormwater Report** ### A. Introduction Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key. A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth. The Stormwater Report must include: - The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report. - Applicant/Project Name - Project Address - Name of Firm and Registered Professional Engineer that prepared the Report - Long-Term Pollution Prevention Plan required by Standards 4-6 - Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8² - Operation and Maintenance Plan required by Standard 9 In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations. As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook. To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report. ¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices. ² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site. ## **Checklist for Stormwater Report** ### B. Stormwater Checklist and Certification The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards. *Note:* Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination. A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report. ### Registered Professional Engineer's Certification I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application. Registered Professional Engineer Block and Signature Manual Ma ### Checklist | Project Type: Is the application for new development, redevelopment, or a mix of new an redevelopment? | d | |---|---| | | | | ☑ Redevelopment | | | Mix of New Development and Redevelopment | | | CI | necklist (continued) | |-----------|--| | en | • Measures: Stormwater Standards require LID measures to be considered. Document what vironmentally sensitive design and LID Techniques were considered during the planning and design of project: | | \square | No disturbance to any Wetland Resource Areas | | | Site Design Practices (e.g. clustered development, reduced frontage setbacks) | | Ø | Reduced Impervious Area (Redevelopment Only) | | V | Minimizing disturbance to existing trees and shrubs | | | LID Site Design Credit Requested: | | | ☐ Credit 1 | | | Credit 2 | | | ☐ Credit 3 | | | Use of "country drainage" versus curb and gutter conveyance and pipe | | | Bioretention Cells (includes Rain Gardens) | | | Constructed Stormwater Wetlands (includes Gravel Wetlands designs) | | | Treebox Filter | | | Water Quality Swale | | | Grass Channel | | | Green Roof | |
 Other (describe): | | | | | Sta | andard 1: No New Untreated Discharges | | V | No new untreated discharges | | | Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth | | \square | Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included. | | CI | checklist (continued) | | | | |-----------|--|--|--|------------------------------| | Sta | tandard 2: Peak Rate Attenua | tion | | | | | and stormwater discharge is t | o a wetland subject to | located in land subject to coastal stor
coastal flooding.
poding increases during the 100-year 2 | _ | | \square | development rates for the 2-y flooding increases during the | ear and 10-year 24-ho
100-year 24-hour stor | nt peak discharge rates do not exceed
our storms. If evaluation shows that of
m, calculations are also provided to sh
eed pre-development rates for the 100 | f-site
now that | | Sta | tandard 3: Recharge | | | | | V | Soil Analysis provided. | | | | | | Required Recharge Volume o | alculation provided. | | | | | Required Recharge volume re | educed through use of | the LID site Design Credits. | | | |] Sizing the infiltration, BMPs is | based on the followin | g method: Check the method used. | | | | ☐ Static ☐ Simple | e Dynamic | ☐ Dynamic Field ¹ | | | | Runoff from all impervious are | eas at the site discharg | ging to the infiltration BMP. | | | | Runoff from all impervious are
are provided showing that the
generate the required recharg | drainage area contrib | scharging to the infiltration BMP and outing runoff to the infiltration BMPs is | alculations
sufficient to | | | Recharge BMPs have been s | ized to infiltrate the Re | quired Recharge Volume. | | | | Recharge BMPs have been s
extent practicable for the follo | ized to infiltrate the Re
wing reason: | equired Recharge Volume <i>only</i> to the r | naximum | | | ☑ Site is comprised solely o | f C and D soils and/or | bedrock at the land surface | | | | M.G.L. c. 21E sites pursu | ant to 310 CMR 40.00 | 00 | | | | Solid Waste Landfill pursu | uant to 310 CMR 19.00 | 00 | | | : | Project is otherwise subje
practicable. | ct to Stormwater Mana | agement Standards only to the maxim | um extent | | | Calculations showing that the | infiltration BMPs will d | train in 72 hours are provided. | | | | Property includes a M.G.L. c. | 21E site or a solid was | ste landfill and a mounding analysis is | included. | | | | | | | ¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used. | Standard 3: Recharge (continued) The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mou analysis is provided. Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetlar resource areas. | |--| | year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mou analysis is provided. Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetlated the seasonal high groundwater is less than 4 feet and a mou analysis is provided. | | | | | | Standard 4: Water Quality | | The Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan. | | A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch real calculating the water quality volume are included, and discharge: | | is within the Zone II or Interim Wellhead Protection Area | | is near or to other critical areas | | is within soils with a rapid infiltration rate (greater than 2.4 inches per hour) | | involves runoff from land uses with higher potential pollutant loads. | | ☐ The Required Water Quality Volume is reduced through use of the LID site Design Credits. ☐ Calculations documenting that the treatment train meets the 80% TSS removal requirement an applicable, the 44% TSS removal pretreatment requirement, are provided. | | Cł | necklist (continued) | |-----|--| | Sta | ndard 4: Water Quality (continued) | | | The BMP is sized (and calculations provided) based on: | | | ☐ The ½" or 1" Water Quality Volume or | | | The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume. | | | The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs. | | | A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided. | | Sta | ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs) | | | The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> to the discharge of stormwater to the post-construction stormwater BMPs. | | | The NPDES Multi-Sector General Permit does <i>not</i> cover the land use. | | | LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan. | | | All exposure has been eliminated. | | | All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list. | | | The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent. | | Sta | ndard 6: Critical Areas | | | The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area. | | | Critical areas and BMPs are identified in the Stormwater Report. | | | | ### Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program ## **Checklist for Stormwater Report** ### Checklist (continued) Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent
Practicable as a: ☐ Limited Project Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff ☐ Bike Path and/or Foot Path Redevelopment Project Redevelopment portion of mix of new and redevelopment. Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that #### Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information: the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment - Narrative; - Construction Period Operation and Maintenance Plan; - Names of Persons or Entity Responsible for Plan Compliance; - Construction Period Pollution Prevention Measures: - Erosion and Sedimentation Control Plan Drawings; - Detail drawings and specifications for erosion control BMPs, including sizing calculations; - Vegetation Planning; - Site Development Plan: improves existing conditions. - Construction Sequencing Plan; - Sequencing of Erosion and Sedimentation Controls: - Operation and Maintenance of Erosion and Sedimentation Controls; - Inspection Schedule; - Maintenance Schedule; - Inspection and Maintenance Log Form. - A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report. ## **Checklist for Stormwater Report** Checklist (continued) Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued) ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins. The project is **not** covered by a NPDES Construction General Permit. ☐ The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. ☐ The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins. Standard 9: Operation and Maintenance Plan ☐ The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information: Name of the stormwater management system owners; Party responsible for operation and maintenance; Schedule for implementation of routine and non-routine maintenance tasks; Plan showing the location of all stormwater BMPs maintenance access areas; Description and delineation of public safety features; Estimated operation and maintenance budget; and Operation and Maintenance Log Form. ☐ The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions: A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs; A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions. Standard 10: Prohibition of Illicit Discharges The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges; An Illicit Discharge Compliance Statement is attached; NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post-construction BMPs. #### MAP LEGEND MAP INFORMATION Area of Interest (AOI) The soil surveys that comprise your AOI were mapped at Spoil Area = 1:20,000. Area of Interest (AOI) Stony Spot Soils Warning: Soil Map may not be valid at this scale. 00 Very Stony Spot Soil Map Unit Polygons Enlargement of maps beyond the scale of mapping can cause Ŷ Wet Spot Soil Map Unit Lines misunderstanding of the detail of mapping and accuracy of soil -Other Δ line placement. The maps do not show the small areas of Soil Map Unit Points contrasting soils that could have been shown at a more detailed .. Special Line Features Special Point Features scale. Water Features Blowout (0) Please rely on the bar scale on each map sheet for map Streams and Canals Borrow Pit \boxtimes Transportation 寒 Clay Spot Source of Map: Natural Resources Conservation Service Rails +++ Web Soil Survey URL: Closed Depression 0 Interstate Highways Coordinate System: Web Mercator (EPSG:3857) -Gravel Pit X US Routes Maps from the Web Soil Survey are based on the Web Mercator **Gravelly Spot** projection, which preserves direction and shape but distorts ** Major Roads 50 distance and area. A projection that preserves area, such as the 2 Albers equal-area conic projection, should be used if more Local Roads 557055 accurate calculations of distance or area are required. Lava Flow 1 Background This product is generated from the USDA-NRCS certified data as Marsh or swamp Aerial Photography 44 Sec. of the version date(s) listed below 受 Soil Survey Area: Worcester County, Massachusetts, Miscellaneous Water 0 Northeastern Part Survey Area Data: Version 15, Jun 10, 2020 Perennial Water 0 Soil map units are labeled (as space allows) for map scales Rock Outcrop 1:50,000 or larger. Saline Spot Date(s) aerial images were photographed: Sep 12, 2014—Sep Sandy Spot ... Severely Eroded Spot The orthophoto or other base map on which the soil lines were بيسي compiled and digitized probably differs from the background Sinkhole imagery displayed on these maps. As a result, some minor Slide or Slip shifting of map unit boundaries may be evident. Sodic Spot ## **Map Unit Legend** | Map Unit Symbol | Map Unit Name | Acres in AOI | Percent of AOI | | | |-----------------------------|--|--------------|----------------|--|--| | 31A | Walpole sandy loam, 0 to 3 percent slopes | 4.4 | 15.1% | | | | 305B | Paxton fine sandy loam, 3 to 8 percent slopes | 8.4 | 28.3% | | | | 305C | Paxton fine sandy loam, 8 to
15 percent slopes | 13.8 | 46.7% | | | | 622C | Paxton-Urban land complex, 8 to 15 percent slopes | 1.2 | 4.2% | | | | 625C | Hinckley-Urban land complex,
0 to 15 percent slopes | 1.7 | 5.7% | | | | Totals for Area of Interest | - | 29.5 | 100.0% | | | ## Yankee Engineering & Testing, Inc. 10 Mason Street Worcester, MA 10609 Phone: (508) 831-7404 • Fax: (508) 831-7388 Fairlawn Rehabilitation Hospital **Project:** Location: 189 May Street, Worcester, MA 19103 Project #: May 10, 2021 Date: Encompass Health Client: Google Earth SITE LOCUS PLAN FROM: Approx. Scale Aerial photo FIGURE 1 See Map Scale Fax: (508) 831-7388 Client: **Encompass Health** FROM: Schematic Site Plan BORING LOCATION PLAN FIGURE 2 Approx. Scale: See map scale | Boring # | B - 1 | |-------------|---------------| | Sheet # | 1 of 1 | | Location: | Addition west | | Elevation: | ≈ 597' | | Drill Date: | 5/10/2021 | | | | _ | | | | | | | | | | | <u> </u> | |--------------------------|--------------------------
--	--	--	--
--	--	--	--
because	Application of the second state of	NO CONTRACTOR OF THE PERSON	ET - 51
--	--	--	--
--	--	--	--
avena	AND SECTION AND ASSESSED.		<u> </u>
--	--	--	--
---	--	--	--
--	--	--	--
--		Project A	
Mr. Jool M	larin		0.46
--	--	--	--
COLON DE LA COMPANSA	ALESTER REGER EN PERSONNELLA REGERE	ATTENDA OF THE SHAPE WHEN THE STATE OF S	W. SOWARY DESCRIPTION TO THE WAY AND ADDRESS OF
---	----------------------	--	--
□No	□Yes □No		
(ft/sec)	(cfs)		
Volume= Secondary = 0.000 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 577.40' @ 12.18 hrs Surf.Area= 77 sf Storage= 49 cf Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (782.0 - 781.9)	Volume	Inve	rt Avail.Sto
Subcatchment 6S: DA-6 RUNOFF TO SWALE ON WEST SIDE OF LOT Runoff = 9.0 9.02 cfs @ 12.14 hrs, Volume= 0.713 af, Depth> 2.85" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" Type III 24-hr 10-yr Rainfall=4.87" Prepared by THOMPSON-LISTON Associates, Inc. Printed 9/15/2021 HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 12	_	A	rea (sf)
TW=559.80' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs) ### Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.255 ac, 79.56% Impervious, Inflow Depth > 3.50" for 10-yr event Inflow 4.65 cfs @ 12.13 hrs, Volume= 0.366 af Outflow = Primary 4.65 cfs @ 12.13 hrs, Volume= 0.366 af, Atten= 0%, Lag= 0.0 min 4.65 cfs @ 12.13 hrs, Volume= 0.366 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs. dt= 0.10 hrs. Peak Elev= 578.98' @ 12.13 hrs Flood Elev= 584.71' Device Routing Invert Outlet Devices #1 577.00' Primary 12.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 577.00' / 571.56' S= 0.0800 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=4.40 cfs @ 12.13 hrs HW=578.86' (Free Discharge) 1=Culvert (Inlet Controls 4.40 cfs @ 5.61 fps) # Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = Inflow 0.394 ac, 94.56% Impervious, Inflow Depth > 3.70" for 10-yr event 1.53 cfs @ 12.13 hrs, Volume= 0.121 af Outflow = 1.53 cfs @ 12.13 hrs, Volume= 0.121 af, Atten= 0%, Lag= 0.0 min Primary 1.53 cfs @ 12.13 hrs, Volume= 0.121 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.10' @ 12.21 hrs Flood Elev= 585.40' Device Routing #1 Primary 580.38' Invert Outlet Devices 15.0" Round Culvert L= 95.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.36' S= 0.0107 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf Primary OutFlow Max=1.09 cfs @ 12.13 hrs HW=581.04' TW=580.71' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.09 cfs @ 2.39 fps) Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 17 ### Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 0.953 ac, 83.94% Impervious, Inflow Depth > 3.55" for 10-vr event Inflow 3.55 cfs @ 12.13 hrs, Volume= 0.282 af 3.55 cfs @ 12.13 hrs, Volume= Outflow 0.282 af, Atten= 0%, Lag= 0.0 min Primary 3.55 cfs @ 12.13 hrs, Volume= 0.282 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.24' @ 12.13 hrs Flood Elev= 586.35' Device Routing Invert Outlet Devices #1 Primary 581.06 15.0" Round Culvert L= 177.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 581.06' / 580.39' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=3.37 cfs @ 12.13 hrs HW=582.20' TW=580.71' (Dynamic Tailwater) 1=Culvert (Barrel Controls 3.37 cfs @ 3.77 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 5.09 cfs @ 12.13 hrs, Volume= 1.346 ac, 87.05% Impervious, Inflow Depth > 3.59" for 10-yr event Inflow 0.403 af Outflow = 4.97 cfs @ 12.17 hrs, Volume= 0.403 af, Atten= 2%, Lag= 2.2 min Primary = 4.97 cfs @ 12.17 hrs, Volume= 0.403 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 580.79' @ 12.17 hrs Surf.Area= 224 sf Storage= 303 cf Flood Elev= 586.31' Surf.Area= 25 sf Storage= 496 cf Plug-Flow detention time= 1.1 min calculated for 0.399 af (99% of inflow) Center-of-Mass det. time= 0.7 min (778.9 - 778.2)	<u>Volume</u>	Invert	Avail.Storage
TO LOWER POND Runoff = 0.19 cfs @ 12.13 hrs, Volume= 0.015 af, Depth> 4.59" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95"		Α	rea (sf)
Max=0.52 cfs @ 12.13 hrs HW=581.19' TW=581.15' (Dynamic Tailwater) **T_1=Culvert** (Outlet Controls 0.52 cfs @ 0.87 fps) Type III 24-hr 25-yr Rainfall=5.95" Prepared by THOMPSON-LISTON Associates. Inc. Printed 9/15/2021 HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 25 Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 0.953 ac, 83.94% Impervious, Inflow Depth > 4.40" for 25-vr event Inflow 4.41 cfs @ 12.13 hrs, Volume= 0.349 af Outflow 4.41 cfs @ 12.13 hrs, Volume= 0.349 af, Atten= 0%, Lag= 0.0 min Primary 4.41 cfs @ 12.13 hrs, Volume= 0.349 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.47' @ 12.13 hrs Flood Elev= 586.35' Invert Outlet Devices Device Routing #1 Primary 15.0" Round Culvert L= 177.0' Square-edged headwall, Ke= 0.500 581.06 Inlet / Outlet Invert= 581.06' / 580.39' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=4.18 cfs @ 12.13 hrs HW=582.41' TW=581.15' (Dynamic Tailwater) 1=Culvert (Barrel Controls 4.18 cfs @ 3.93 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND 1.346 ac, 87.05% Impervious, Inflow Depth > 4.45" for 25-yr event Inflow Area = Inflow 6.29 cfs @ 12.13 hrs, Volume= 0.499 af 6.26 cfs @ 12.17 hrs, Volume= Outflow = 0.499 af, Atten= 1%, Lag= 2.3 min 6.26 cfs @ 12.17 hrs, Volume= Primary 0.499 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.33' @ 12.17 hrs Surf.Area= 46 sf Storage= 368 cf Flood Elev= 586.31' Surf.Area= 25 sf Storage= 496 cf Plug-Flow detention time= 1.1 min calculated for 0.493 af (99% of inflow) Center-of-Mass det. time= 0.7 min (778.2 - 777.5)	<u>Volume</u>	Invert	Avail.Storage
----------------------------	-----------------------------	-----------------	-------------
(Outlet Controls 5.17 cfs @ 4.22 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.346 ac, 87.05% Impervious, Inflow Depth > 5.75" for 100-yr event Inflow 8.14 cfs @ 12.13 hrs, Volume= 0.645 af Outflow 8.01 cfs @ 12.15 hrs, Volume= 0.645 af, Atten= 2%, Lag= 1.0 min Primary 8.01 cfs @ 12.15 hrs, Volume= 0.645 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.00' @ 12.15 hrs Surf.Area= 25 sf Storage= 387 cf Flood Elev= 586.31' Surf.Area= 25 sf Storage= 496 cf Plug-Flow detention time= 1.1 min calculated for 0.639 af (99% of inflow) Center-of-Mass det. time= 0.7 min (777.6 - 776.9)	Volume	invert	Avail.Storage
(min)	(feet)	(ft/ft)	(ft/sec)
Primary 2.74 cfs @ 12.14 hrs, Volume= 2.74 cfs @ 12.14 hrs, Volume= 0.217 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.90' @ 12.14 hrs Flood Elev= 586.35' Device Routing Invert Outlet Devices #1 Primary 581.06' 15.0" Round Culvert L= 95.0' CPP, square edge headwall, Ke= 0.500 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 10 Inlet / Outlet Invert= 581.06' / 580.04' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=2.60 cfs @ 12.14 hrs HW=581.87' TW=580.50' (Dynamic Tailwater) —1=Culvert (Inlet Controls 2.60 cfs @ 3.07 fps) # Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.569 ac, 88.79% Impervious, Inflow Depth > 2.25" for 2-yr event Inflow = 3.71 cfs @ 12.13 hrs, Volume= 0.294 af Outflow = 3.45 cfs @ 12.19 hrs, Volume= 0.294 af, Atten= 7%, Lag= 3.5 min Primary = 3.45 cfs @ 12.19 hrs, Volume= 0.294 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 580.61' @ 12.19 hrs Surf.Area= 777 sf Storage= 362 cf Flood Elev= 586.31' Surf.Area= 502 sf Storage= 2,130 cf Plug-Flow detention time= 1.4 min calculated for 0.293 af (100% of inflow) Center-of-Mass det. time= 0.9 min (780.7 - 779.7)	Volume	Invert	Avail.Storage
Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 14 # Summary for Subcatchment 9S: DA-9 EASTERLY SLOPE TO OFFSITE Runoff 1.54 cfs @ 12.15 hrs, Volume= 0.125 af, Depth> 2.08" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfali=4.87"	_	A	rea (sf)
0.0800 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=3.64 cfs @ 12.14 hrs HW=578.43' (Free Discharge) 1=Culvert (Inlet Controls 3.64 cfs @ 4.64 fps) # Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 3.70" for 10-yr event Inflow 1.53 cfs @ 12.13 hrs. Volume= 0.121 af Outflow = 1.53 cfs @ 12.13 hrs, Volume= 0.121 af, Atten= 0%, Lag= 0.0 min Primary 1.53 cfs @ 12.13 hrs, Volume= Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs. dt= 0.10 hrs. Peak Elev= 581.61' @ 12.30 hrs Flood Elev= 585.40' Device Routing Invert Outlet Devices #1 Primary 580.38 **15.0" Round Culvert** L= 177.0' Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.71' S= 0.0038 '/' Cc= 0.900 0.121 af n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=0.00 cfs @ 12.13 hrs HW=581.19' TW=581.24' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs) # Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 1.175 ac, 86.86% Impervious, Inflow Depth > 3.59" for 10-vr event Inflow 4.44 cfs @ 12.13 hrs, Volume= 0.351 af Outflow 4.44 cfs @ 12.13 hrs, Volume= 0.351 af, Atten= 0%, Lag= 0.0 min Primary 4.44 cfs @ 12.13 hrs, Volume= 0.351 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.23' @ 12.13 hrs Flood Elev= 586.35' Device Routing Invert Outlet Devices #1 Primary 581.06' **15.0" Round Culvert** L= 95.0' CPP, square edge headwall, Ke= 0.500 Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC <u>Page 19</u> Inlet / Outlet Invert= 581.06' / 580.04' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=3.96 cfs @ 12.13 hrs HW=582.19' TW=581.24' (Dynamic Tailwater) —1=Culvert (Outlet Controls 3.96 cfs @ 4.49 fps) # Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.569 ac, 88.79% Impervious, Inflow Depth > 3.62" for 10-yr event Inflow = 5.97 cfs @ 12.13 hrs, Volume= 0.473 af Outflow = 5.26 cfs @ 12.21 hrs, Volume= 0.473 af, Atten= 12%, Lag= 4.6 min Primary = 5.26 cfs @ 12.21 hrs, Volume= 0.473 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.55' @ 12.21 hrs Surf.Area= 684 sf Storage= 891 cf Flood Elev= 586.31' Surf.Area= 502 sf Storage= 2,130 cf Plug-Flow detention time= 1.7 min calculated for 0.472 af (100% of inflow) Center-of-Mass det. time= 1.3 min (779.2 - 777.9)	Volume	Invert	Avail.Storage
---------------	------	---------------------------------------	
long x 1.00' rise Sharp-Crested Vee/Trap Weir		•	
----------------------	-------------------	---------------	
(cubic-feet)			559.44
PROTECTION WATER SERVICE SHALL BE INSIDE THE BUILDING. 10. DOMESTIC WATER SERVICE SHALL BE INSIDE THE BUILDING. 11. TRASH AND RECYCLABLES WILL BE STORED IN CLOSED CONTAINERS IN THE EXISTING LOADING AREA. 12. ALL TREES AND SHRUBS PLANTED SHALL BE ASIAN LONGHORNED BEETLE AND EMERALD ASH BORER RESISTANT VARIETIES. 13. THE IMPERAVOUS AREA IS APPROXIMATELY XXXXX S.F. IN THE EXISTING CONDITION AND APPROXIMATELY XXXXX S.F. IN THE PROPOSED. THOMPSON-LISTON ASSOCIATES, INC. Professional Engineers Professional Land Surveyors Erosion Control Specialists 51 Main Street, Post Office Box 570, Boylston, MA 01505 Telephone 508-869-6151 www.thompsonliston.com	CLT. NO.	JOB NO.	
existing parking lot drainage system to the north. The piped drainage system will then be retrofitted to constrict the pipe leading out the existing surface detention basin, in order to avoid divert the discharge through a subsurface detention/infiltration BMP. Although there is a net increase of 7,013 sq. ft. of impervious area, the actual peak rate and volume of runoff will be less in the proposed condition. No new untreated discharges are proposed. ### STANDARD 2 – PEAK RATE ATTENUATION As described in the report and hydrologic calculations, the peak rate of runoff will be mitigated for the 2, 10, 25, and 100-year storms. so there is no contribution to off-site flooding. #### STANDARD 3 – RECHARGE Though the redevelopment results in a modest increase to impervious cover, and equivalent area of impervious parking lot will be removed on the west edge of the parking lot, so the project does not result in an increase in impervious cover. Soil types present on the site are identified as Paxton fine sandy loam, which would normally be classified as hydrologic group C soil. However, the soil borings in the area of development indicate dense glacial till with inordinate fine content, between Stormwater Standards Compliance 189 May Street, Worcester, MA September 14, 2021 Page 2 25%-40% passing the #200 sieve. This type of soil is unsuitable for any type of infiltration systems whether open air or subsurface. As such, we will not be proposing any recharge. #### STANDARD 4 – WATER QUALITY Standard 4 is also based up on the amount of new impervious surfaces being created on a site. As stated in the prior section, no increase in the impervious cover is proposed by this project. In this case, all runoff from the altered impervious parking area and walks will continue to be directed to deep sump catch basins and walks. Once small area of the fire lane will be collected into a trench drain with a sump, and will be piped around the ambulance bay. The roof runoff is considered clean and is not subject to the Standard 4 requirements. #### STANDARD 5 - LUHPPLs Site does not fall into this category. #### STANDARD 6 – CRITICAL AREAS Site is not in or near a critical area as defined in the DEP Stormwater Handbook. #### STANDARD 7 – REDEVELOPMENT As a redevelopment site, the modest increase in impervious cover is mitigated through the reduction of paved surface in another area of the site. The redevelopment of the site will represent an improvement in stormwater management in terms of reduction of the peak rate of flow through additional mitigation. In addition, there will be an O&M plan in place for improved long term water quality and protection of stormwater infrastructure. ### STANDARD 8 - CONSTRUCTION PERIOD CONTROLS An Erosion and Sedimentation Control Plan has been developed, and is shown on the plans. Details of the BMPs are shown on the Detail Sheet of the Site Plan. ### STANDARD 9 - OPERATION AND MAINTENANCE PLAN An Operation and Maintenance Program covering the construction period and post-construction period maintenance and inspection requirements of the proposed stormwater structures has been written and is included herewith. ### STANDARD 10 - PROHIBITION OF ILLICIT DISCHARGES Provisions will be made to prevent illicit non-stormwater discharges to waters of the Commonwealth. The owner is cognizant of the effects upon the environment of improper disposal of wastewater, process waste, raw materials, toxic and hazardous substances, oil and grease, and seeks to prevent damage to the environment. Such substances if present shall be stored in covered containers or within parked vehicles on the site and will not be exposed to rainfall. Spill kits will be stored on site and replenished as necessary to prevent the migration of potential contaminants. Prepared by: Patrick J. Healy, P.E. THOMPSON-LISTON ASSOCIATES, INC ### **Checklist for Stormwater Report** ### A. Introduction Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key. A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth. The Stormwater Report must include: - The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report. - Applicant/Project Name - Project Address - Name of Firm and Registered Professional Engineer that prepared the Report - Long-Term Pollution Prevention Plan required by Standards 4-6 - Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8² - Operation and Maintenance Plan required by Standard 9 In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations. As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook. To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report. ¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices. ² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site. ### **Checklist for Stormwater Report** ### B. Stormwater Checklist and Certification The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards. *Note:* Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination. A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report. ### Registered Professional Engineer's Certification I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application. Registered Professional Engineer Block and Signature Signature and Date	OI		1 _ 1
---			New development
use.			
1,2	4.2%		625C
--	--	--	--
--	--	--	
section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the se	gayeren (et et e		11
--	--	--	--
--	--	--	--
--	--	--	--
(Self Provide Grant Service	A STATE OF THE PARTY OF THE PARTY OF THE PARTY.	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN OW	Native
---	-------------------------------	--	------------------
--	--	--	--
--	--		1
additional information			Driller:
--	--	--	--
--	--	--	--
--			
IN COLUMN TWO IS NOT TRANSPORT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT	A CONTRACTOR AND CONT	P, Christian School (1997/1997)	en margine de Amerikan des des des des des des des des des de des des
<u>Classification</u> AASHT	O= A-2-4(0)		
This list will ensure that you are inspecting all required BMPs at your site. - Describe corrective actions initiated, date completed, and note the person that completed the work in the Corrective Action Log.		BMP	BMP
Imp	ious Ārea	ea	
HW=562.98' (Free Discharge) Primary OutFlow Max=8.72 cfs @ 12.20 hrs HW=562.98' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 8.72 cfs @ 1.10 fps) —2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) ## Summary for Pond 2P: Small Det. Pond	Inflow Area =	1.435 ac, 81.68% Impervious, Inflow	Depth > 2.14" for 2-yr event
UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfail=4.87"		A	rea (sf)
Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 16 Primary OutFlow Max=4.99 cfs @ 12.19 hrs HW=578.47' TW=563.06' (Dynamic Tailwater) 1=Culvert to Large Pond (Barrel Controls 4.99 cfs @ 6.36 fps) Secondary OutFlow Max=0.00 cfs @ 10.00 hrs HW=576.43' TW=559.80' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs) ### Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.255 ac, 79.56% Impervious, Inflow Depth > 3.50" for 10-yr event Inflow = 4.65 cfs @ 12.13 hrs, Volume= 0.366 af Outflow = 4.65 cfs @ 12.13 hrs, Volume= 0.366 af, Atten= 0%, Lag= 0.0 min Primary 4.65 cfs @ 12.13 hrs, Volume= 0.366 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs. dt= 0.10 hrs. Peak Elev= 578.98' @ 12.13 hrs Flood Elev= 584.71' Device Routing Invert Outlet Devices #1 Primary 577.00' 12.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 577.00' / 571.56' S= 0.0800 '/' Cc= 0.900 n= 0.012. Flow Area= 0.79 sf Primary OutFlow Max=4.40 cfs @ 12.13 hrs HW=578.86' (Free Discharge) 1=Culvert (Inlet Controls 4.40 cfs @ 5.61 fps) ## Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 3.70" for 10-yr event Inflow 1.53 cfs @ 12.13 hrs, Volume= 0.121 af Outflow = 1.53 cfs @ 12.13 hrs, Volume= 0.121 af, Atten= 0%, Lag= 0.0 min Primary 1.53 cfs @ 12.13 hrs, Volume= 0.121 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.10' @ 12.21 hrs Flood Elev= 585.40' Device Routing **Outlet Devices** Invert #1 Primary 580.38' 15.0" Round Culvert L= 95.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.36' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=1.09 cfs @ 12.13 hrs HW=581.04' TW=580.71' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.09 cfs @ 2.39 fps) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 17 ### Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 0.953 ac, 83.94% Impervious, Inflow Depth > 3.55" for 10-yr event Inflow = 3.55 cfs @ 12.13 hrs, Volume= 0.282 af Outflow = 3.55 cfs @ 12.13 hrs, Volume= 0.282 af, Atten= 0%, Lag= 0.0 min Primary = 3.55 cfs @ 12.13 hrs, Volume= 0.282 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.24' @ 12.13 hrs Primary Flood Elev= 586.35' Device Routing #1 Invert Outlet Devices 581.06' 15.0" Round Culvert L= 177.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 581.06' / 580.39' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=3.37 cfs @ 12.13 hrs HW=582.20' TW=580.71' (Dynamic Tailwater) 1=Culvert (Barrel Controls 3.37 cfs @ 3.77 fps) ## Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.346 ac, 87.05% Impervious, Inflow Depth > 3.59" for 10-yr event Inflow = 5.09 cfs @ 12.13 hrs, Volume= 0.403 af Outflow = 4.97 cfs @ 12.17 hrs, Volume= 0.403 af, Atten= 2%, Lag= 2.2 min Primary = 4.97 cfs @ 12.17 hrs, Volume= 0.403 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 580.79' @ 12.17 hrs Surf.Area= 224 sf Storage= 303 cf Flood Elev= 586.31' Surf.Area= 25 sf Storage= 496 cf Plug-Flow detention time= 1.1 min calculated for 0.399 af (99% of inflow) Center-of-Mass det. time= 0.7 min (778.9 - 778.2)	<u>Volume</u>	Invert	Avail.Storage
	rea (sf)	CN	Description
12.13 hrs HW=579.60' (Free Discharge) 1=Culvert (Inlet Controls 5.48 cfs @ 6.98 fps) ### Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 4.55" for 25-yr event Inflow = 1.88 cfs @ 12.13 hrs, Volume= 0.149 af Outflow = 1.88 cfs @ 12.13 hrs, Volume= 0.149 af, Atten= 0%, Lag= 0.0 min Primary = 1.88 cfs @ 12.13 hrs, Volume= 0.149 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.43' @ 12.26 hrs Flood Elev= 585.40' | Device | Routing | Invert | Outlet Devices | |--------|---------|---------|---| | #1 | Primary | 580.38' | 15.0" Round Culvert L= 95.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.36' S= 0.0107'/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf | Primary OutFlow Max=0.52 cfs @ 12.13 hrs HW=581.19' TW=581.15' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.52 cfs @ 0.87 fps) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 25 ### Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 0.953 ac, 83.94% Impervious, Inflow Depth > 4.40" for 25-yr event Inflow = 4.41 cfs @ 12.13 hrs, Volume= 0.349 af Outflow = 4.41 cfs @ 12.13 hrs, Volume= 0.349 af, Atten= 0%, Lag= 0.0 min Primary = 4.41 cfs @ 12.13 hrs, Volume= 0.349 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.47' @ 12.13 hrs Flood Elev= 586.35' Device Routing Invert Outlet Devices #1 Primary 581.06' 15.0" Round Culvert L= 177.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 581.06' / 580.39' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=4.18 cfs @ 12.13 hrs HW=582.41' TW=581.15' (Dynamic Tailwater) 1=Culvert (Barrel Controls 4.18 cfs @ 3.93 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.346 ac, 87.05% Impervious, Inflow Depth > 4.45" for 25-yr event Inflow = 6.29 cfs @ 12.13 hrs, Volume= 0.499 af Outflow = 6.26 cfs @ 12.17 hrs, Volume= 0.499 af, Atten= 1%, Lag= 2.3 min Primary = 6.26 cfs @ 12.17 hrs, Volume= 0.499 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.33' @ 12.17 hrs Surf.Area= 46 sf Storage= 368 cf Flood Elev= 586.31' Surf.Area= 25 sf Storage= 496 cf Plug-Flow detention time= 1.1 min calculated for 0.493 af (99% of inflow) Center-of-Mass det. time= 0.7 min (778.2 - 777.5) | <u>Volume</u> | Invert | Avail.Storage | Storage Description | | |---------------|---------|---------------|--|--| | #1 | 579.36' | 87 cf | 4.00'D x 6.95'H Vertical Cone/Cylinder | | | #2 | 579.36' | | 15.0" Round Pipe Storage | | | | | | L= 177.0' S= 0.0038 '/" | | | #3 | 579.36' | 117 cf | 15.0" Round Pipe Storage | | | | | | L= 95.0' S= 0.0107 '/' | | | #4 | 580.39' | 78 cf | 4.00'D x 6.23'H Vertical Cone/Cylinder | | | | | 100 f | | | 499 cf Total Available Storage | Device | Routing | Invert | Outlet Devices | |--------|---------|---------|--| | #1 | Primary | 579.36' | 15.0" Round Culvert L= 61.0' Square-edged headwall, Ke= 0.500 | | • | | | Inlet / Outlet Invert= 579.36' / 578.98' S= 0.0062 '/' Cc= 0.900 | | | | | n= 0.012. Flow Area= 1.23 sf | Primary OutFlow Max=5.99 cfs @ 12.17 hrs HW=581.23' TW=578.99' (Dynamic Tailwater) 1=Culvert (Barrel Controls 5.99 cfs @ 4.88 fps) Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 26 ### Summary for Subcatchment 1S: DA-1 TO CATCH BASINS Runoff 1.02 cfs @ 12.13 hrs, Volume= 0.081 af, Depth> 5.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | Α | rea (sf) | <u>CN</u> | Description | | | | |------|-------------------------------|------------------|------------------|--------------------|-------------------|---------------|--| | * | | 7,195 | 98 | impervious | | | | | | 7,195 100.00% Impervious Area | | | | | | | | _ (n | Tc
nin) | Length
(feet) | Slope
(ft/ft) | , | Capacity
(cfs) | . | | | 1 | 0.0 | | | | | Direct Entry. | | ### Summary for Subcatchment 2S: DA-2 TO CATCH BASINS Runoff 1.40 cfs @ 12.13 hrs, Volume= 0.111 af, Depth> 5.83" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | | | | |---|-------------|-----------------------|---------------|--|-------------------|---------------|--| | 4 | • | 9,015 | 98 | impervious | | | | | 4 | | 932 | 74 | hsgC grass | , open | | | | | | 9,947
932
9,015 | 96 | Weighted A
9.37% Perv
90.63% Imp | | | | | _ | Tc
(min) | Length
(feet) | Slop
(ft/f | - | Capacity
(cfs) | Description | | | | 10.0 | | | | | Direct Entry, | | ## Summary for Subcatchment 3S: DA-3 EASTERLY SITE TO EXISTING CATCH BASIN IN DRIVE Runoff 7.52 cfs @ 12.13 hrs, Volume= 0.595 af, Depth> 5.69" | | Area (sf) | CN | Description | |---|----------------------------|----|--| | * | 41,229 | 98 | impervious | | * | 6,247 | 74 | hsgC grass, open, some mulch | | * | 4,922 | 72 | hsgC wooded, trees | | * | 2,258 | 98 | roof | | | 54,656
11,169
43,487 | 93 | Weighted Average
20.44% Pervious Area
79.56% Impervious Area | Type III 24-hr 100-yr Rainfall=7.61" Prepared by THOMPSON-LISTON Associates, Inc. Printed 9/15/2021 HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 27 | _ | | | Velocity
(ft/sec) | | Description | |---|------|--|----------------------|--|--------------| | | 10.0 | | | ······································ | Direct Entry | Direct Entry, ### Summary for Subcatchment 4S: DA-4 TO CATCH BASINS Runoff 1.43 cfs @ 12.14 hrs, Volume= 0.112 af, Depth> 5.30" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | | | | | | | |---|-------|----------------------------|--------|-------------|-------------|---------------|--|--|--|--| | 4 | • | 5,894 | 98 | impervious | | | | | | | | 1 | : | 5,182 | 74 | hsgC grass | , open | | | | | | | | | 11,076 87 Weighted Average | | | | | | | | | | | | 5,182 | | | | | | | | | | | | 5,894 | | 53.21% lmp | pervious Ar | | | | | | | | Tc | Length | Slop | • | Capacity | Description | | | | | | _ | (min) | (feet) | (ft/fi | t) (ft/sec) | (cfs) | | | | | | | | 10.0 | | | | | Direct Entry. | | | | | ### Summary for Subcatchment 5S: DA-5 TO CATCH BASINS Runoff 4.29 cfs @ 12.13 hrs, Volume= 0.341 af, Depth> 5.86" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | | | | | | |------------------------------|-------------|------------------|------------------|--|-------------------|---------------|--|--|--| | | * | 28,942 | 98 | impervious | | | | | | | | * | 1,482 | 74 | hsgC grass, open | | | | | | | 30,424 97
1,482
28,942 | | | | Weighted A
4.87% Perv
95.13% Imp | ious Area | ea | | | | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | • | Capacity
(cfs) | Description | | | | | | 10.0 | | | | | Direct Entry, | | | | ## Summary for Subcatchment 6S: DA-6 RUNOFF TO SWALE ON WEST SIDE OF LOT Runoff 16.06 cfs @ 12.14 hrs, Volume= 1.265 af, Depth> 5.06" Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 28 | _ | Area | ı (sf) | CN | Description | | | | | | | | |---|------|-----------------|------------------|-------------|--------------------|----------------|--|--|--|--|--| | * | 44 | ,913 | 98 | impervious | mpervious | | | | | | | | * | 72 | ,726 | 72 | hsgC wood | hsgC wooded, trees | | | | | | | | * | 12 | ,925 | 98 | roof | | | | | | | | | | 130 | ,564 | 84 | Weighted A | verage | | | | | | | | | 72 | ,726 | | 55.70% Pei | vious Area | | | | | | | | | 57 | ,838 | | 44.30% lmp | pervious Are | e a | | | | | | | | | ength
(feet) | Slope
(ft/ft) | - | Capacity
(cfs) | Description | | | | | | | | 10.0 | | | | | Direct Entry, | | | | | | ## Summary for Subcatchment 7S: DA-7 WESTERLY SLOPE TO OFFSITE Runoff 2.80 cfs @ 12.14 hrs, Volume= 0.220 af, Depth> 5.06" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | | | | | | | |---|-------------|------------------|-----------------|----------------------|-------------------|---------------|---|---|--|--| | 4 | • | 9,091 | 98 | impervious | | | | _ | | | | 4 | : | 13,655 | 74 | hsgC grass | , open | | | | | | | | | 22,746 | 84 | Weighted A | | _ | | | | | | | | 13,655 | | 60.03% Pervious Area | | | | | | | | | | 9,091 | | 39.97% I mp | pervious Are | эа | · | | | | | | Tc
(min) | Length
(feet) | Slope
(ft/ft | , | Capacity
(cfs) | Description | | | | | | - | 10.0 | | | · | (===/ | Direct Entry, | | _ | | | ## Summary for Subcatchment 8S: DA-8 OVERLAND TO LOWER POND Runoff = 0.24 cfs @ 12.13 hrs, Volume= 0.019 af, Depth> 5.89" | | Α | rea (sf) | CN I | Description | | | |---|-------------|------------------|------------------|----------------------|------------|--------------| | , | * | 1,702 | 98 i | mpervious | | | | | · | 1,702 | , | 100.00% Im | pervious A | Area | | | Tc
(min) | Length
(feet) |
Slope
(ft/ft) | Velocity
(ft/sec) | Capacity | Description | | - | 10.0 | (leet) | (IVIC) | (IVSec) | (cfs) | Direct Entry | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall≈7.61" Printed 9/15/2021 Page 29 ## Summary for Subcatchment 9S: DA-9 EASTERLY SLOPE TO OFF SITE Runoff 3.23 cfs @ 12.14 hrs, Volume= 0.256 af, Depth> 4.18" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | · | | | | | | |---|-------------|---------------------------|-----------------|--|-------------------|---------------|--|---|--|--| | 4 | + | 1,737 | 98 | impervious | · · · · · · | | | _ | | | | * | | 13,161 | 74 | hsgC grass | nsgC grass, open | | | | | | | 4 | r | 17,161 | 72 | hsgC wood | sgC wooded, trees | | | | | | | | | 32,059
30,322
1,737 | | Weighted A
94.58% Per
5.42% Impe | vious Area | a | | | | | | _ | Tc
(min) | Length
(feet) | Slope
(ft/ft | | Capacity
(cfs) | Description | | | | | | | 10.0 | | | | | Direct Entry. | | _ | | | ## Summary for Subcatchment 10S: DA-10 OVERLAND TO SMALL POND Runoff 0.39 cfs @ 12.14 hrs, Volume= 0.031 af, Depth> 4.18" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | | | | | |-----------------------------|------|----------|---------|-------------|----------|---------------|--|--| | * | | 3,852 | 74 | hsgC grass | , open | | | | | 3,852 100.00% Pervious Area | | | | | | | | | | , | Тc | Length | Slope | | Capacity | Description | | | | <u>(n</u> | nin) | (feet) | (ft/ft) | (ft/sec) | (cfs) | | | | | 1 | 10.0 | | | | | Direct Entry, | | | ## Summary for Subcatchment 16S: NORTH WING ROOF Runoff 1.84 cfs @ 12.13 hrs, Volume= 0.146 af, Depth> 5.89" | | Aı | rea (sf) | CN I | Description | | | |---------------------|------------|------------------|------------------|----------------------|------------|--------------| | * | | 12,979 | 98 | roof | | | | 12,979 100.00% Impe | | | | | pervious A | Area | | (r | Tc
min) | Length
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | | Description | | | 10.0 | (leet) | (IVIL) | (II/Sec) | (cfs) | Direct Entry | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 30 ### Summary for Reach 6R: Swale - runs W to N Inflow Area = 3.295 ac, 49.34% Impervious, Inflow Depth > 5.14" for 100-yr event Inflow 17.90 cfs @ 12.14 hrs, Volume= 1.411 af Outflow 17.52 cfs @ 12.18 hrs, Volume= 1.408 af, Atten= 2%, Lag= 2.4 min Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Max. Velocity= 4.85 fps, Min. Travel Time= 1.7 min Avg. Velocity = 1.97 fps. Avg. Travel Time= 4.2 min Peak Storage= 1,801 cf @ 12,18 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.50' Flow Area= 13.3 sf, Capacity= 106.43 cfs 4.00' x 1.50' deep channel, n= 0.025 Side Slope Z-value= 5.0 1.5 " Top Width= 13.75" Length= 500.0' Slope= 0.0200 '/' Inlet Invert= 573.00', Outlet Invert= 563.00' ### Summary for Pond 1P: Northerly POND Inflow Area = 4.769 ac, 59.48% Impervious, Inflow Depth > 5.29" for 100-yr event Inflow 26.38 cfs @ 12.18 hrs, Volume= 2.103 af Outflow = 26.53 cfs @ 12.19 hrs, Volume= 2.010 af, Atten= 0%, Lag= 0.6 min 0.06 cfs @ 12.18 hrs, Volume= Discarded = 0.046 af Primary 26.47 cfs @ 12.19 hrs, Volume= 1.964 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 563.19' @ 12.18 hrs Surf.Area= 2,744 sf Storage= 5,026 cf Plug-Flow detention time= 23.9 min calculated for 1.988 af (95% of inflow) Center-of-Mass det. time= 8.0 min (791.3 - 783.3) | Volume | Invert | Avail.Storage | Storage Description | |----------|---------|---------------|---| | #1 | 559.44' | 7,541 cf | Northerly Pond from Swale (Prismatic) Listed below (Recalc) | | . | | | | | Elevation | Surf.Area | Inc.Store | Cum.Store | |-----------|-----------|--------------|--------------| | (feet) | (sq-ft) | (cubic-feet) | (cubic-feet) | | 559.44 | 0 | 0 | 0 | | 560.00 | 431 | 121 | 121 | | 562.00 | 1,819 | 2,250 | 2,371 | | 562.79 | 2,337 | 1,642 | 4,012 | | 563.00 | 2,585 | 517 | 4,529 | | 564.00 | 3,438 | 3,012 | 7,541 | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 31 | Device | Routing | Invert | Outlet Devices | |--------|-----------|---------|---| | #1 | Primary | 562.78' | 40.0' long x 9.0' breadth Broad-Crested Rectangular Weir | | | • | | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 | | | | | 2.50 3.00 3.50 4.00 4.50 5.00 5.50 | | | | | Coef. (English) 2.46 2.55 2.70 2.69 2.68 2.68 2.67 2.64 2.64 2.64 | | | | | 2.65 2.64 2.65 2.65 2.66 2.67 2.69 | | #2 | Primary | 563.30' | 40.0' long (Profile 29) Broad-Crested Rectangular Weir | | | | | Head (feet) 0.49 0.98 1.48 | | | | | Coef. (English) 3.48 3.50 3.48 | | #3 | Discarded | 559.44' | 1.020 in/hr Exfiltration over Horizontal area | **Discarded OutFlow** Max=0.06 cfs @ 12.18 hrs HW=563.18' (Free Discharge) 1—3=Exfiltration (Exfiltration Controls 0.06 cfs) Primary OutFlow Max=25.69 cfs @ 12.19 hrs HW=563.18' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 25.69 cfs @ 1.61 fps) —2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) #### Summary for Pond 2P: Small Det. Pond | Inflow Area = | 1.435 ac, 81.68% Impervious, Inflow I | Depth > 5.65" for 100-yr event | |---------------|---------------------------------------|-----------------------------------| | Inflow = | 8.40 cfs @ 12.15 hrs, Volume= | 0.676 af | | Outflow = | 8.63 cfs @ 12.18 hrs, Volume= | 0.676 af, Atten= 0%, Lag= 1.7 min | | Primary = | 6.09 cfs @ 12.16 hrs, Volume= | 0.644 af | | Secondary = | 2.55 cfs @ 12.18 hrs, Volume= | 0.032 af | Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 579.33' @ 12.16 hrs Surf.Area= 198 sf Storage= 298 cf Plug-Flow detention time= 0.4 min calculated for 0.676 af (100% of inflow) Center-of-Mass det. time= 0.3 min (778.6 - 778.3) | Volume | Inve | ert Avail.Sto | rage Storage | Description | | |----------|----------------|---------------|---------------|------------------|-----------------------------------| | #1 | 576.2 | 1' 4 | 57 cf Small D | etention Pond | (Prismatic) Listed below (Recalc) | | Elevatio | on (| Surf.Area | Inc.Store | Cum.Store | | | (fee | | (sq-ft) | (cubic-feet) | (cubic-feet) | | | 576.2 | 21 | 0 | 0 | 0 | | | 577.0 | 00 | 56 | 22 | 22 | | | 578.0 | - - | 108 | 82 | 104 | | | 579.0 | | 162 | 135 | 239 | | | 580.0 | 00 | 273 | 218 | 457 | | | Device | Routing | Invert | Outlet Device | s | | | #1 | Primary | 576.21' | 12.0" Round | Culvert to Larg | ge Pond | | | | | | | headwall, Ke= 0.500 | | | | | | | '575.71' S= 0.0102 '/' Cc= 0.900 | | | | | n= 0.012, Flo | w Area= 0.79 s | f | | #2 | Seconda | ry 579.00' | 120.0 deg x 5 | .0' long x 1.00' | rise Sharp-Crested Vee/Trap Weir | Cv= 2.48 (C= 3.10) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall≈7.61" Printed 9/15/2021 Page 32 Primary OutFlow Max=5.99 cfs @ 12.16 hrs HW=579.25' TW=563.17' (Dynamic Tailwater) 1=Culvert to Large Pond (Barrel Controls 5.99 cfs @ 7.63 fps) Secondary OutFlow Max=2.25 cfs @ 12.18 hrs HW=579.26' TW=563.18' (Dynamic Tailwater) —2=Sharp-Crested Vee/Trap Weir (Weir Controls 2.25 cfs @ 1.56 fps) ## Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.255 ac, 79.56% Impervious, Inflow Depth > 5.69" for 100-yr event Inflow = 7.52 cfs @ 12.13 hrs, Volume= 0.595 af Outflow = 7.52 cfs @ 12.13 hrs, Volume= 0.595 af, Atten= 0%, Lag= 0.0 min Primary = 7.52 cfs @ 12.13 hrs, Volume= 0.595 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.39' @ 12.13 hrs Flood Elev≃ 584.71' Primary OutFlow Max=7.14 cfs @ 12.13 hrs HW=581.06' (Free Discharge) 1=Culvert (Inlet Controls 7.14 cfs @ 9.08 fps) # Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 5.85" for 100-yr event Inflow = 2.42 cfs @ 12.13 hrs, Volume= 0.192 af Outflow = 2.42 cfs @ 12.13 hrs, Volume= 0.192 af, Atten= 0%, Lag= 0.0 min Primary = 2.42 cfs @ 12.13 hrs, Volume= 0.192 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.07' @ 12.24 hrs Flood Elev= 585.40' | Device | Routing | Invert | Outlet Devices | |--------|---------|---------|---| | #1 · | Primary | 580.38' | 15.0" Round Culvert L= 95.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.36' S= 0.0107 '/' Cc= 0.900 n= 0.012. Flow Area= 1.23 sf | Primary OutFlow Max=0.00 cfs @ 12.13 hrs HW=581.52' TW=581.85' (Dynamic Tailwater) —1=Culvert (Controls 0.00 cfs) Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 33 ### Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 0.953 ac, 83.94% Impervious, Inflow Depth > 5.71" for 100-vr event Inflow 5.72 cfs @ 12.13 hrs. Volume= Outflow = 5.72 cfs @ 12.13 hrs, Volume= 0.453 af, Atten= 0%, Lag= 0.0 min 5.72 cfs @ 12.13 hrs, Volume= Primary 0.453 af 0.453 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs. dt= 0.10 hrs. Peak Elev= 583.36' @ 12.15 hrs Primary Flood Elev= 586.35' Device Routing #1 Invert Outlet Devices 581.06' 15.0" Round
Culvert L= 177.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 581.06' / 580.39' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=5.17 cfs @ 12.13 hrs HW=583.23' TW=581.85' (Dynamic Tailwater) T-1=Culvert (Outlet Controls 5.17 cfs @ 4.22 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = = 1.346 ac, 87.05% Impervious, Inflow Depth > 5.75" for 100-yr event 0.645 af Inflow 8.14 cfs @ 12.13 hrs, Volume= 8.01 cfs @ 12.15 hrs, Volume= 0.645 af, Atten= 2%, Lag= 1.0 min Outflow Primary 8.01 cfs @ 12.15 hrs, Volume= 0.645 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.00' @ 12.15 hrs Surf.Area= 25 sf Storage= 387 cf Flood Elev= 586.31' Surf.Area= 25 sf Storage= 496 cf Plug-Flow detention time= 1.1 min calculated for 0.639 af (99% of inflow) Center-of-Mass det. time= 0.7 min (777.6 - 776.9) | <u>Volume</u> | Invert | Avail.Storage | Storage Description | | |---------------|---------|---------------|--|--| | #1 | 579.36' | 87 cf | 4.00'D x 6.95'H Vertical Cone/Cylinder | | | #2 | 579.36' | 217 cf | 15.0" Round Pipe Storage | | | | | | L= 177.0' S= 0.0038 '/' | | | #3 | 579.36' | 117 cf | 15.0" Round Pipe Storage | | | | | | L= 95.0' S= 0.0107 '/' | | | #4 | 580.39' | 78 cf | 4.00'D x 6.23'H Vertical Cone/Cylinder | | | | | 100 (| T / 1 A / 1 0 / | | 499 cf Total Available Storage | Device | Routing | Invert | Outlet Devices | |--------|---------|---------|---| | #1 | Primary | 579.36' | 15.0" Round Culvert L= 61.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 579.36' / 578.98' S= 0.0062 '/' Cc= 0.900 n= 0.012 Flow Area= 1.23 sf | Primary OutFlow Max=7.61 cfs @ 12.15 hrs HW=581.85' TW=579.24' (Dynamic Tailwater) 1=Culvert (Barrel Controls 7.61 cfs @ 6.20 fps) #### 189 MAY ST Fairlawn POSTDEV Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 2 ## **Summary for Subcatchment 1S: DA-1 TO CATCH BASINS** Runoff 0.42 cfs @ 12.13 hrs, Volume= 0.033 af, Depth> 2.39" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | Area | a (sf) | CN | Description | | | | | |----|------|-----------------|-----------------|-------------------|-------------------|---------------|------|------| | * | 7 | ,195 | 98 | impervious | | |
 |
 | | | 7 | ,195 | | 100.00% Im | npervious A | rea | |
 | | (m | | ength
(feet) | Slope
(ft/ft | Velocity (ft/sec) | Capacity
(cfs) | Description | | | | 10 | 0.0 | | | | | Direct Entry, |
 |
 | ### Summary for Subcatchment 2S: DA-2 TO CATCH BASINS Runoff 0.55 cfs @ 12.13 hrs, Volume= 0.044 af, Depth> 2.30" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | A | rea (sf) | CN | Description | <u> </u> | | | | | |-----------|------|----------|-------|---------------------|-----------------|---------------|--|--|--| | * | | 9,015 | 98 | impervious | | | | | | | * | | 932 | 74 | hsgC grass | sgC grass, open | | | | | | | | 9,947 | 96 | Weighted A | | | | | | | | | 932 | | 9.37% Pervious Area | | | | | | | | | 9,015 | | 90.63% Imp | pervious Ar | ea | | | | | | Тс | Length | Slop | e Velocity | Capacity | Description | | | | | <u>(r</u> | nin) | (feet) | (ft/f |) (ft/sec) | (cfs) | | | | | | • | 10.0 | | | | | Direct Entry, | | | | ## Summary for Subcatchment 3S: DA-3 TO CATCH BASIN IN MAIN DRIVEWAY Runoff 2.25 cfs @ 12.14 hrs, Volume= 0.177 af, Depth> 1.97" | | Area (sf) | CN | Description | | | | |---|-----------|----|------------------------------|--|--|--| | * | 31,510 | 98 | impervious | | | | | * | 7,119 | 74 | nsgC grass, open, some mulch | | | | | * | 6,093 | 72 | hsgC wooded, trees | | | | | * | 2,258 | 98 | <u>roof</u> | | | | | | 46,980 | 91 | Weighted Average | | | | | | 13,212 | | 28.12% Pervious Area | | | | | | 33,768 | | 71.88% Impervious Area | | | | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 3 | | | | | | Description | |--------------|--------|---------|----------|-------|---------------| | <u>(min)</u> | (feet) | (ft/ft) | (ft/sec) | (cfs) | | | 10.0 | | | | | Direct Entry, | # **Summary for Subcatchment 4S: DA-4 TO CATCH BASINS** Runoff 0.43 cfs @ 12.14 hrs, Volume= 0.034 af, Depth> 1.77" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | A | rea (sf) | CN | Description | 1 | _ | | |---|-------------|--------------------------|---------------|--|-------------------|---------------|--| | * | | 5,963 | 98 | impervious | | | | | * | | 4,221 | 74 | hsgC grass | , open | | | | | | 10,184
4,221
5,963 | 88 | Weighted A
41.45% Per
58.55% Imp | rvious Area | | | | - | Tc
(min) | Length
(feet) | Slop
(ft/f | • | Capacity
(cfs) | Description | | | | 10.0 | | | | , ,,,, | Direct Entry, | | ## **Summary for Subcatchment 5S: DA-5 TO CATCH BASINS** Runoff 1.73 cfs @ 12.13 hrs, Volume= 0.137 af, Depth> 2.35" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | _ | Α | rea (sf) | CN | Description | | | | |---|-------------|---------------------------|-----------------|--|-------------------|---------------|--| | , | * | 28,942 | 98 | impervious | | | | | • | * | 1,482 | 74 | hsgC grass | , open | | | | | | 30,424
1,482
28,942 | 97 | Weighted A
4.87% Perv
95.13% Imp | ious Area | rea | | | | Tc
(min) | Length
(feet) | Slope
(ft/ft | - | Capacity
(cfs) | Description | | | | 10.0 | | | | | Direct Entry, | | ## Summary for Subcatchment 6S: DA-6 RUNOFF TO SWALE ON WEST SIDE OF LOT Runoff 4.46 cfs @ 12.15 hrs, Volume= 0.359 af, Depth> 1.44" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 4 | _ | Are | a (sf) | CN | Description | | | | |---|---------------|-------------------------|------------------|-------------|-------------------------------------|---------------|--| | * | 4 | 3,513 | 98 | mpervious | | | | | * | 7 | 4,098 | 72 | hsgC wood | ed, trees | | | | * | 1: | 2,925 | 98 | roof | | | | | | 7 | 0,536
4,098
5,438 | | | verage
vious Area
pervious Ar | | | | | Tc I
(min) | ength | Slope
(ft/ft) | | Capacity
(cfs) | Description | | | | 10.0 | | | | | Direct Entry, | | ## Summary for Subcatchment 7S: DA-7 WESTERLY SLOPE OF OFFSITE Runoff : 0.82 cfs @ 12.15 hrs, Volume= 0.065 af, Depth> 1.50" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | Α | rea (sf) | CN | Description | | | | | |---|-------------|---------------------------|---------------|--|-------------------|---------------|------|--| | * | | 9,091 | 98 | impervious | | |
 | | | * | | 13,655 | 74 | hsgC grass | , open | | | | | | | 22,746
13,655
9,091 | 84 | Weighted A
60.03% Per
39.97% Imp | rvious Area | | | | | | Tc
(min) | Length
(feet) | Slop
(ft/f | • | Capacity
(cfs) | Description | | | | | 10.0 | | | | | Direct Entry, |
 | | # Summary for Subcatchment 8S: DA-8 OVERLAND TO LOWER POND Runoff 0.10 cfs @ 12.13 hrs, Volume= 0.008 af, Depth> 2.39" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | _ | A | rea (sf) | CN | Description | | | |---|-------------|------------------|------------------|-------------------|-------------------|---------------| | * | | 1,702 | 98 | impervious | | | | | | 1,702 | | 100.00% In | npervious A | Area | | | Tc
(min) | Length
(feet) | Siope
(ft/ft) | Velocity (ft/sec) | Capacity
(cfs) | • | | _ | 10.0 | <u> </u> | | | <u>\</u> \ | Direct Entry. | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 5 # Summary for Subcatchment 9S: DA-9 EASTERLY SLOPE TO OFFSITE Runoff 0.63 cfs @ 12.17 hrs, Volume= 0.054 af, Depth> 0.91" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | Area (| sf) CN | D | escription | | | | |-----------|---------|----------|-------|------------|--------------|--|--| | * | g | 21 98 | in | npervious | | | | | * | 13,2 | 18 74 | h: | sgC grass | , open | | | | * | 17,1 | 94 72 | h | sgC wood | ed, trees | | | | | 31,3 | 33 74 | · V | eighted A | verage | | | | | 30,4 | 12 | 9 | 7.06% Per | vious Area | | | | | 9 | 21 | 2. | .94% Impe | ervious Area | a | | | | Tc Ler | ngth Slo | ope | Velocity | Capacity | Description | | | <u>(n</u> | nin) (f | eet) (f | t/ft) | (ft/sec) | (cfs) | <u>. </u> | | | 1 | 0.0 | | | _ | | Direct Entry, | | ## Summary for Subcatchment 10S: DA-10 OVERLAND TO SMALL POND Runoff 0.08 cfs @ 12.17 hrs, Volume= 0.007 af, Depth> 0.91" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | A | rea (sf) | CN [| Description | | | | |---|-------|----------|---------|-------------|-------------|---------------|--| | * | | 3,852 | 74 ł | nsgC grass | , open | | | | | |
3,852 | | 100.00% Pe | ervious Are | эа | | | | Tc | Length | Slope | • | Capacity | | | | | (min) | (feet) | (ft/ft) | (ft/sec) | (cfs) | | | | | 10.0 | | | | | Direct Entry, | | ## Summary for Subcatchment 16S: NORTH WING ROOF Runoff 0.75 cfs @ 12.13 hrs, Volume= 0.059 af, Depth> 2.39" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | Area | (sf) | <u>CN</u> [| Description | | | |-----|------|-----------------|------------------|----------------------|-------------------|---------------| | * | 12 | ,979 | 98 r | oof | | | | | 12 | ,979 | 1 | 00.00% Im | npervious A | Area | | (mi | | ength
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | | | | 0.0 | 1.001) | (1414) | (12000) | (010) | Direct Entry. | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 6 # Summary for Subcatchment 17S: DA-11 SMALL AREA OF FIRE LANE TO TRENCH DRAIN Runoff == 0.16 cfs @ 12.14 hrs, Volume= 0.013 af, Depth> 1.97" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | | Area | (sf) | CN | Description | | | | |-----------|------|-------------------|-----------------|--|-------------------|---------------|------| | * | 2,3 | 311 | 98 | impervious | pav | |
 | | * | 1,0 | 026 | | pervious gr | - | | | | | 1,0 | 337
026
311 | | Weighted A
30.75% Per
69.25% Imp | rvious Area | | | | <u>(n</u> | | ngth
feet) | Slope
(ft/ft | | Capacity
(cfs) | Description | | | 1 | 0.0 | | | | | Direct Entry, | | ## Summary for Subcatchment 18S: NEW BUILDING ADDITION ROOF AREA Runoff = 0.42 cfs @ 12.13 hrs, Volume= 0.033 af, Depth> 2.39" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 2-yr Rainfall=3.14" | A | rea (sf) | CN I | Description | | | | |-------------|------------------|------------------|----------------------|-------------------|---------------|--| | | 7,255 | 98 1 | Roofs, HSC | C | | | | | 7,255 | • | 100.00% lm | pervious A | rea | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | 10.0 | | | ,, | 10.07 | Direct Entry, | | # Summary for Reach 6R: Swale - runs W to N Inflow Area = 3.295 ac, 48.37% Impervious, Inflow Depth > 1.52" for 2-yr event Inflow = 5.21 cfs @ 12.15 hrs, Volume= 0.418 af Outflow = 5.11 cfs @ 12.19 hrs, Volume= 0.417 af, Atten= 2%, Lag= 2.9 min Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Max. Velocity= 3.34 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 6.5 min Peak Storage= 765 cf @ 12.19 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.50' Flow Area= 13.3 sf, Capacity= 106.43 cfs #3 Discarded 559.44' Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 7 4.00' x 1.50' deep channel, n= 0.025 Side Slope Z-value= 5.0 1.5 '/' Top Width= 13.75' Length= 500.0' Slope= 0.0200 '/' Inlet Invert= 573.00', Outlet Invert= 563.00' ### **Summary for Pond 1P: Northerly POND** Inflow Area = 4.991 ac, 60.62% Impervious, Inflow Depth > 1.74" for 2-yr event Inflow = 8.71 cfs @ 12.20 hrs, Volume= 0.725 af Outflow = 8.83 cfs @ 12.21 hrs, Volume= 0.632 af, Atten= 0%, Lag= 0.7 min Discarded = 0.06 cfs @ 12.21 hrs, Volume= 0.042 af Primary = 8.77 cfs @ 12.21 hrs, Volume= 0.590 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 562.98' @ 12.21 hrs Surf.Area= 2,561 sf Storage= 4,476 cf Plug-Flow detention time= 55.1 min calculated for 0.626 af (86% of inflow) Center-of-Mass det. time= 18.5 min (811.6 - 793.1) | Volume | Inv | ert Avail.Sto | rage Storage | Description | | |-----------|---------|---------------|---------------|------------------|--| | #1 | 559. | 44' 7,5 | 41 cf Norther | ly Pond from S | wale (Prismatic) Listed below (Recalc) | | Clauratio | - 10 | C A | l O1 | 0 0 | , | | Elevation | | Surf.Area | Inc.Store | Cum.Store | | | (fee | >t) | (sq-ft) | (cubic-feet) | (cubic-feet) | | | 559.4 | 14 | 0 | 0 | 0 | | | 560.0 | 00 | 431 | 121 | 121 | | | 562.0 | 00 | 1,819 | 2,250 | 2,371 | | | 562.7 | 79 | 2,337 | 1,642 | 4,012 | | | 563.0 | 00 | 2,585 | 517 | 4,529 | | | 564.0 | 00 | 3,438 | 3,012 | 7,541 | | | Device | Routing | Invert | Outlet Device | es | | | #1 | Primary | 562.78' | 40.0' long x | 9.0' breadth Bro | pad-Crested Rectangular Weir | | | • | | | | 0.80 1.00 1.20 1.40 1.60 1.80 2.00 | | | | | | 50 4.00 4.50 5 | | | | | | | | 70 2.69 2.68 2.68 2.67 2.64 2.64 2.64 | | | | | | 65 2.65 2.66 2 | | | #2 | Primary | 563.30' | | | -Crested Rectangular Weir | | | • | | | 0.49 0.98 1.48 | | | | | | | h) 3.48 3.50 3. | 48 | | | | | , J | , | | 1.020 in/hr Exfiltration over Horizontal area Volume Invert Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 8 **Discarded OutFlow** Max=0.06 cfs @ 12.21 hrs HW=562.98' (Free Discharge) **12.21 hrs** HW=562.98' (Free Discharge) Primary OutFlow Max=8.63 cfs @ 12.21 hrs HW=562.98' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 8.63 cfs @ 1.09 fps) —2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) ### Summary for Pond 2P: Small Det. Pond Inflow Area = 1.657 ac, 84.05% Impervious, Inflow Depth > 2.17" for 2-yr event Inflow = 3.52 cfs @ 12.19 hrs, Volume= 0.300 af Outflow = 3.51 cfs @ 12.20 hrs, Volume= 0.300 af, Atten= 0%, Lag= 0.6 min Primary = 3.51 cfs @ 12.20 hrs, Volume= 0.300 af Secondary = 0.00 cfs @ 10.00 hrs, Volume= 0.000 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 577.58' @ 12.20 hrs Surf.Area= 86 sf Storage= 63 cf Plug-Flow detention time= 0.2 min calculated for 0.300 af (100% of inflow) Center-of-Mass det. time= 0.2 min (781.8 - 781.6) Avail Storage Storage Description | #1 576.21' 457 cf Small Detention Pond (Prismatic) Listed below Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) | | |---|----------| | | (Recalc) | | | | | 576.21 0 0 0 | | | 577.00 56 22 22 | | | 578.00 108 82 104 | | | 579.00 162 135 239 | | | 580.00 273 218 457 | | | Device | Routing | Invert | Outlet Devices | |--------|-----------|---------|--| | #1 | Primary | 576.21' | 12.0" Round Culvert to Large Pond | | | | | L= 49.0' CPP, square edge headwall, Ke= 0.500 | | | | | Inlet / Outlet Invert= 576.21' / 575.71' S= 0.0102 '/' Cc= 0.900 | | | | | n= 0.012, Flow Area= 0.79 sf | | #2 | Secondary | 579.00' | 120.0 deg x 5.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir | | | | | Cv= 2.48 (C= 3.10) | Primary OutFlow Max=3.50 cfs @ 12.20 hrs HW=577.57' TW=562.98' (Dynamic Tailwater) —1=Culvert to Large Pond (Barrel Controls 3.50 cfs @ 4.45 fps) Secondary OutFlow Max=0.00 cfs @ 10.00 hrs HW=576.39' TW=559.71' (Dynamic Tailwater) —2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 9 ## Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.079 ac, 71.88% Impervious, Inflow Depth > 1.97" for 2-yr event Inflow 2.25 cfs @ 12.14 hrs. Volume= 0.177 af Outflow #1 == 2.25 cfs @ 12.14 hrs, Volume= 0.177 af, Atten= 0%, Lag= 0.0 min Primary = 2.25 cfs @ 12.14 hrs. Volume= 0.177 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 577.85' @ 12.14 hrs Flood Elev= 584.71' Primary Device Routina Invert Outlet Devices 577.00' 580.381 12.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 577.00' / 571.56' S= 0.0800 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=2.13 cfs @ 12.14 hrs HW=577.82' (Free Discharge) **1=Culvert** (Inlet Controls 2.13 cfs @ 3.08 fps) ## Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 2.34" for 2-vr event Inflow 0.97 cfs @ 12.13 hrs, Volume= 0.077 af Outflow Primary 0.97 cfs @ 12.13 hrs, Volume= 0.97 cfs @ 12.13 hrs. Volume= 0.077 af, Atten= 0%, Lag= 0.0 min 0.077 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 580.96' @ 12.20 hrs Flood Elev= 585.40' Device Routing Invert Outlet Devices #1 Primary **15.0" Round Culvert** L= 177.0' Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.71' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=0.73 cfs @ 12.13 hrs HW=580.93' TW=580.49' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.73 cfs @ 2.05 fps) # Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 1.175 ac, 86.86% Impervious, Inflow Depth > 2.22" for 2-yr event Inflow 2.74 cfs @ 12.14 hrs, Volume= 0.217 af Outflow = Primary 2.74 cfs @ 12.14 hrs, Volume= 2.74 cfs @ 12.14 hrs, Volume= 0.217 af, Atten= 0%, Lag= 0.0 min 0.217 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.90' @ 12.14 hrs Flood Elev= 586.35' | Device | Routing | |--------|---------| | #1 | Drimon | Invert Outlet Devices 581.06 15.0" Round Culvert L= 95.0' CPP, square edge headwall, Ke= 0.500 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-yr Rainfall=3.14" Printed 9/15/2021 Page 10 Inlet / Outlet Invert= 581.06' / 580.04' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary
OutFlow Max=2.60 cfs @ 12.14 hrs HW=581.87' TW=580.50' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.60 cfs @ 3.07 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.569 ac, 88.79% Impervious, Inflow Depth > 2.25" for 2-yr event Inflow = 3.71 cfs @ 12.13 hrs, Volume= 0.294 af Outflow = 3.45 cfs @ 12.19 hrs, Volume= 0.294 af, Atten= 7%, Lag= 3.5 min Primary = 3.45 cfs @ 12.19 hrs, Volume= 0.294 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 580.61' @ 12.19 hrs Surf.Area= 777 sf Storage= 362 cf Flood Elev= 586.31' Surf.Area= 502 sf Storage= 2,130 cf Plug-Flow detention time= 1.4 min calculated for 0.293 af (100% of inflow) Center-of-Mass det. time= 0.9 min (780.7 - 779.7) | <u>Volume</u> | Invert | Avail.Storage | Storage Description | |---------------|---------|---------------|---| | #1 | 579.36' | 87 cf | 4.00'D x 6.95'H Vertical Cone/Cylinder | | #2 | 579.36' | | 36.0" Round Pipe Storage | | | | | L= 65.0' S= 0.0038 '/' | | #3 | 579.36' | 117 cf | 15.0" Round Pipe Storage | | | | | L= 95.0' S= 0.0107 '/' | | #4 | 580.39' | 78 cf | 4.00'D x 6.23'H Vertical Cone/Cylinder | | #5 | 580.00' | 507 cf | 4.00'W x 116.00'L x 4.50'H Prismatoid | | | | | 2,088 cf Overall - 820 cf Embedded = 1,268 cf x 40.0% Voids | | #6 | 580.50' | 820 cf | 36.0" Round Pipe Storage Inside #5 | | | | | L= 116.0' S= 0.0050 '/' | | #7 | 581.06' | 65 cf | 4.00'D x 5.19'H Vertical Cone/Cylinder | | | | | | 2,134 cf Total Available Storage | Device | Routing | Invert | Outlet Devices | |--------|----------|---------|--| | #1 | Primary | 579.36' | 15.0" Round Culvert L= 61.0' Ke= 0.500 | | • | | | Inlet / Outlet Invert= 579.36' / 578.98' S= 0.0062 '/' Cc= 0.900 | | | | | n= 0.012, Flow Area= 1.23 sf | | #2 | Device 1 | 579.36' | 13.2" Vert. Orifice/Grate C= 0.600 | | #3 | Device 2 | 579.35' | 12.3" Vert. Orifice/Grate C= 0.600 | | #4 | Device 2 | 581.40' | 10.0" Vert. Orifice/Grate C= 0.600 | | #5 | Device 2 | 582.00' | 4.0' long x 2.50' rise Sharp-Crested Rectangular Weir | | | | | 2 End Contraction(s) 3.0' Crest Height | Primary OutFlow Max=3.41 cfs @ 12.19 hrs HW=580.60' TW=577.56' (Dynamic Tailwater) -1=Culvert (Passes 3.41 cfs of 4.17 cfs potential flow) -2=Orifice/Grate (Passes 3.41 cfs of 3.80 cfs potential flow) 3=Orifice/Grate (Orifice Controls 3.41 cfs @ 4.13 fps) -4=Orifice/Grate (Controls 0.00 cfs) -5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall≃4.87" Printed 9/15/2021 Page 11 # Summary for Subcatchment 1S: DA-1 TO CATCH BASINS Runoff = 0.65 cfs @ 12.13 hrs, Volume= 0.052 af, Depth> 3.75" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | | A | rea (sf) | CN [| escription | | | | |---|-------|----------|---------|------------|------------|---------------|---------------| | * | | 7,195 | 98 ir | npervious | | | | | | | 7,195 | 1 | 00.00% lm | pervious A | Area | - | | | Tc | Length | | | Capacity | Description | | | - | (min) | (feet) | (ft/ft) | (ft/sec) | (cfs) | | | | | 10.0 | | | | | Direct Entry, | | ## Summary for Subcatchment 2S: DA-2 TO CATCH BASINS Runoff 0.88 cfs @ 12.13 hrs, Volume= 0.070 af, Depth> 3.67" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | _ | A | rea (sf) | CN | Description | | | | | |---|--------------|-----------------------|---------------|--|-------------------|---------------|------|---| | , | k | 9,015 | 98 | impervious | | | | | | 1 | * | 932 | 74 | hsgC grass | , open | | | | | | | 9,947
932
9,015 | 96 | Weighted A
9.37% Perv
90.63% Imp | rious Ārea | ea | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | Tc
(min) | Length
(feet) | Slop
(ft/f | ~ | Capacity
(cfs) | Description | | | | | 10.0 | | | | | Direct Entry. |
 | | # Summary for Subcatchment 3S: DA-3 TO CATCH BASIN IN MAIN DRIVEWAY Runoff 3.85 cfs @ 12.14 hrs, Volume= 0.303 af, Depth> 3.37" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | | Area (st) | <u>CN</u> | Description | |---|-----------|-----------|------------------------------| | * | 31,510 | 98 | impervious | | * | 7,119 | 74 | hsgC grass, open, some mulch | | * | 6,093 | 72 | hsgC wooded, trees | | * | 2,258 | 98 | roof | | | 46,980 | 91 | Weighted Average | | | 13,212 | | 28.12% Pervious Area | | | 33,768 | | 71.88% Impervious Area | Type III 24-hr 10-yr Rainfall=4.87" Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Printed 9/15/2021 Page 12 | Tc
(min) | | Velocity
(ft/sec) | Description | |-------------|--|----------------------|---------------| | 10.0 | | | Direct Entry, | # Summary for Subcatchment 4S: DA-4 TO CATCH BASINS Runoff = 0.78 cfs @ 12.14 hrs, Volume= 0.062 af, Depth> 3.16" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | | A | rea (sf) | CN | Description | | | | |---|-------|----------|-------|-------------|-------------|---------------|--| | * | | 5,963 | 98 | impervious | | | | | * | | 4,221 | 74 | hsgC grass | , open | | | | | | 10,184 | 88 | Weighted A | verage | | | | | | 4,221 | | 41.45% Per | | | | | | | 5,963 | | 58.55% lmp | pervious Ar | ea | | | | Тс | Length | Slop | , | Capacity | Description | | | _ | (min) | (feet) | (ft/f | t) (ft/sec) | (cfs) | | | | | 10.0 | | | | | Direct Entry. | | ## Summary for Subcatchment 5S: DA-5 TO CATCH BASINS Runoff 2.73 cfs @ 12.13 hrs, Volume= 0.216 af, Depth> 3.72" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | A | rea (sf) | CN | Description | | | | | | |-------|----------|--------|-------------|-------------|---------------|---|--|--| | * | 28,942 | 98 | impervious | | | | | | | * | 1,482 | 74 | hsgC grass | , open | | | | | | | 30,424 | 97 | Weighted A | verage | | *************************************** | | | | | 1,482 | | 4.87% Perv | | | | | | | | 28,942 | | 95.13% lmp | ervious Are | ea | | | | | Тс | Length | Slope | e Velocity | Capacity | Description | | | | | (min) | (feet) | (ft/ft |) (ft/sec) | (cfs) | | | | | | 10.0 | | | | | Direct Entry. | | | | # Summary for Subcatchment 6S: DA-6 RUNOFF TO SWALE ON WEST SIDE OF LOT Runoff 8.76 cfs @ 12.14 hrs, Volume= 0.694 af, Depth> 2.78" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 13 | | Ar | ea (sf) | CN | Description | | | |---|-----------------------------|------------------|------------------|-------------|-------------------|---------------| | * | | 43,513 | 98 | mpervious | | | | * | - | 74,098 | 72 | hsgC wood | ed, trees | | | * | | 12,925 | 98 | roof | | | | | 130,536 83 Weighted Average | | | | | | | | | 74,098 | | | vious Area | • | | | į | 56,438 | • | 43.24% lmp | pervious Are | rea | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | • | Capacity
(cfs) | Description | | | 10.0 | | | | | Direct Entry, | ## Summary for Subcatchment 7S: DA-7 WESTERLY SLOPE OF OFFSITE Runoff = 1.57 cfs @ 12.14 hrs, Volume= 0.124 af, Depth> 2.85" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | _ | Α | rea (sf) | CN | Description | l | | | | | | |---|-------------|---------------------------|----------------|--|-------------------|---------------|--|--|--|--| | * | | 9,091 | 98 | impervious | mpervious | | | | | | | * | | 13,655 | 74 | hsgC grass | , open | | | | | | | | | 22,746
13,655
9,091 | 84 | Weighted A
60.03% Per
39.97% Imp | rvious Area | | | | | | | | Tc
(min) | Length
(feet) | Slop
(ft/ft | _ | Capacity
(cfs) | Description | | | | | | | 10.0 | | | | | Direct Entry, | | | | | # Summary for Subcatchment 8S: DA-8 OVERLAND TO LOWER POND Runoff 0.15 cfs @ 12.13 hrs, Volume= 0.012 af, Depth> 3.75" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | | A | rea (sf) | CN | Description | | | | |---|-------|----------|----------------|-------------|------------|---------------|------| | * | | 1,702 | 98 | mpervious | | |
 | | | | 1,702 | | 100.00% Im | pervious A | rea | | | | Tc | Length | | | | Description | | | _ | (min) | (feet) | <u>(ft/ft)</u> | (ft/sec) | (cfs) | | | | | 10.0 | | | | | Direct Entry. | | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 14 ### Summary for Subcatchment 9S: DA-9 EASTERLY SLOPE TO OFFSITE Runoff 1.54 cfs @ 12.15 hrs, Volume= 0.125 af, Depth> 2.08" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | | A | rea (sf) | CN | Description | escription | | | | | | |---|-------------|------------------|-----------------|-------------|-------------------|---------------|--|--|--|--| | * | | 921 | 98 | impervious | npervious | | | | | | | * | | 13,218 | 74 | hsgC grass | sgC grass, open | | | | | | | * | | 17,194 | 72 | hsgC wood | sgC wooded, trees | | | | | | | | | 31,333 | 74 | Weighted A | verage | | | | | | | | | 30,412 | |
97.06% Per | vious Area | | | | | | | | | 921 | | 2.94% Impe | ervious Area | a | | | | | | (| Tc
(min) | Length
(feet) | Slope
(ft/ft | | Capacity
(cfs) | Description | | | | | | _ | 10.0 | (.00.) | (| / (1000) | (0.0) | Direct Entry, | | | | | # Summary for Subcatchment 10S: DA-10 OVERLAND TO SMALL POND Runoff 0.19 cfs @ 12.15 hrs, Volume= 0.015 af, Depth> 2.08" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfali=4.87" | | Area (sf) | _CN [| <u>Description</u> | | | | |-----------|--------------------|------------------|----------------------|-------------------|---------------|--| | * | 3,852 | 74 H | nsgC grass | , open | | | | | 3,852 | | | ervious Are | эа | | | T
(mir | c Length (feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | 10. | ' ' ' ' | (1010) | (1000) | (0.0) | Direct Entry, | | ## Summary for Subcatchment 16S: NORTH WING ROOF Runoff 1.17 cfs @ 12.13 hrs, Volume= 0.093 af, Depth> 3.75" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | | Are | a (sf) | CN L | Description | | | | | |--------|--------------|-------------|---------------------------------------|----------------------|-------------------|---------------|------|--| | * | 12 | 2,979 | 98 r | oof | | | | | | 12,979 | | | 100.00% Impervious Area | | | rea | | | | (| Tc L
min) | ength | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | | | 10.0 | | · · · · · · · · · · · · · · · · · · · | | | Direct Entry, |
 | | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 15 # Summary for Subcatchment 17S: DA-11 SMALL AREA OF FIRE LANE TO TRENCH DRAIN Runoff 0.27 cfs @ 12.14 hrs, Volume= 0.022 af, Depth> 3.37" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4,87" | | Area (sf) | CN | Description | | | | | | | |-----|-----------|-------|-------------|----------------------|---------------|--|--|--|--| | * | 2,311 | 98 | impervious | mpervious pav | | | | | | | * | 1,026 | 74 | pervious gr | pervious grass | | | | | | | | 3,337 | 91 | Weighted A | verage | | | | | | | | 1,026 | | 30.75% Per | 30.75% Pervious Area | | | | | | | | 2,311 | | 69.25% lm | pervious Ar | rea | | | | | | | C Length | Slop | | Capacity | | | | | | | (mi | | (ft/f | t) (ft/sec) | (cfs) | | | | | | | 10 | .0 | | | | Direct Entry, | | | | | ## Summary for Subcatchment 18S: NEW BUILDING ADDITION ROOF AREA Runoff 0.66 cfs @ 12.13 hrs, Volume= 0.052 af, Depth> 3.75" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 10-yr Rainfall=4.87" | A | rea (sf) | CN | Description | | | | | | | |-------------|------------------|------------------|-------------------------|-------------------|---------------|--|--|--|--| | | 7,255 | 98 | Roofs, HSC | S C | | | | | | | | 7,255 | | 100.00% Impervious Area | | | | | | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | | Capacity
(cfs) | Description | | | | | | 10.0 | | | | | Direct Entry. | | | | | # Summary for Reach 6R: Swale - runs W to N Inflow Area = 3.295 ac, 48.37% Impervious, Inflow Depth > 2.87" for 10-yr event Inflow 9.93 cfs @ 12.14 hrs, Volume= 0.787 af Outflow 9.75 cfs @ 12.18 hrs, Volume= 0.784 af, Atten= 2%, Lag= 2.6 min Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Max. Velocity= 4.08 fps, Min. Travel Time= 2.0 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 5.2 min Peak Storage= 1,193 cf @ 12.18 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.50' Flow Area= 13.3 sf, Capacity= 106.43 cfs 564.00 3,438 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 16 4.00' x 1.50' deep channel, n= 0.025 Side Slope Z-value= 5.0 1.5 '/' Top Width= 13.75' Length= 500.0' Slope= 0.0200 '/' Inlet Invert= 573.00', Outlet Invert= 563.00' # **Summary for Pond 1P: Northerly POND** Inflow Area = 4.991 ac, 60.62% Impervious, Inflow Depth > 3.09" for 10-yr event Inflow 15.09 cfs @ 12.20 hrs, Volume= 1.285 af 15.15 cfs @ 12.20 hrs, Volume= Outflow 1.192 af, Atten= 0%, Lag= 0.6 min Discarded = 0.06 cfs @ 12.20 hrs, Volume= 0.044 af Primary 15.09 cfs @ 12.20 hrs, Volume= 1.148 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 563.06' @ 12.20 hrs Surf.Area= 2,639 sf Storage= 4,695 cf Plug-Flow detention time= 35.5 min calculated for 1.179 af (92% of inflow) Center-of-Mass det. time= 12.0 min (799.8 - 787.7) 3,012 | Volume | Invert | Avai | I.Storage | Storage | e Description | | |---------------------|---------|----------------|-----------|-------------------|------------------------|--| | #1 | 559.44' | | 7,541 cf | Norther | ly Pond from S | wale (Prismatic) Listed below (Recalc) | | Elevation
(feet) | | Area
sq-ft) | | Store:
c-feet) | Cum.Store (cubic-feet) | | | 559.44 | | 0 | · · | 0 | 0 | | | 560.00 | | 431 | | 121 | 121 | | | 562.00 | 1 | 1,819 | | 2,250 | 2,371 | | | 562.79 | 2 | 2,337 | | 1,642 | 4,012 | | | 563.00 | 2 | 2,585 | | 517 | 4,529 | | 7,541 | Device | Routing | Invert | Outlet Devices | |--------|-----------|---------|---| | #1 | Primary | 562.78' | 40.0' long x 9.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.46 2.55 2.70 2.69 2.68 2.68 2.67 2.64 2.64 2.65 2.64 2.65 2.65 2.66 2.67 2.69 | | #2 | Primary | 563.30' | 40.0' long (Profile 29) Broad-Crested Rectangular Weir
Head (feet) 0.49 0.98 1.48
Coef. (English) 3.48 3.50 3.48 | | #3 | Discarded | 559.44' | 1.020 in/hr Exfiltration over Horizontal area | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 17 Discarded OutFlow Max=0.06 cfs @ 12.20 hrs HW=563.06' (Free Discharge) T-3=Exfiltration (Exfiltration Controls 0.06 cfs) Primary OutFlow Max=14.96 cfs @ 12.20 hrs HW=563.06' (Free Discharge) -1=Broad-Crested Rectangular Weir (Weir Controls 14.96 cfs @ 1.33 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) ## Summary for Pond 2P: Small Det. Pond Inflow Area = 1.657 ac, 84.05% Impervious, Inflow Depth > 3.53" for 10-yr event Inflow 5.43 cfs @ 12.21 hrs, Volume= 0.488 af Outflow = 5.32 cfs @ 12.24 hrs, Volume= 0.488 af, Atten= 2%, Lag= 1.6 min Primary = 5.32 cfs @ 12.24 hrs, Volume= 0.488 af Secondary = 0.00 cfs @ 10.00 hrs. Volume= 0.000 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 578.70' @ 12.24 hrs Surf.Area= 146 sf Storage= 193 cf Plug-Flow detention time= 0.3 min calculated for 0.483 af (99% of inflow) Center-of-Mass det. time= 0.2 min (780.2 - 780.0) | Volume | Invert | Avail.Sto | rage Stora | ge Description | | |-----------|---------|-----------|--------------------|----------------|-----------------------------------| | #1 | 576.21' | 4 | 57 cf Small | Detention Pond | (Prismatic) Listed below (Recalc) | | Elevation | Surf | .Area | Inc.Store | Cum.Store | | | (feet) | | sq-ft) | (cubic-feet) | (cubic-feet) | | | 576.21 | | 0 | 0 | 0 | | | 577.00 | | 56 | 22 | 22 | | | 578.00 | | 108 | 82 | 104 | | | 579.00 | | 162 | 135 | 239 | | | 580.00 | | 273 | 218 | 457 | | | . | | | | | | | Device Ro | outing | Invert | Outlet Devi | ces | | | DOVICE | itouting | HIVEIL | Outlet Devices | |--------|-----------|---------|--| | #1 | Primary | 576.21' | 12.0" Round Culvert to Large Pond | | | | | L= 49.0' CPP, square edge headwall, Ke= 0.500 | | | | | Inlet / Outlet Invert= 576.21' / 575.71' S= 0.0102 '/' Cc= 0.900 | | | | | n= 0.012, Flow Area= 0.79 sf | | #2 | Secondary | 579.00' | 120.0 deg x 5.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir | | | | | Cv= 2.48 (C= 3.10) | Primary OutFlow Max=5.19 cfs @ 12.24 hrs HW=578.62' TW=563.05' (Dynamic Tailwater) 1=Culvert to Large Pond (Barrel Controls 5.19 cfs @ 6.61 fps) Secondary OutFlow Max=0.00 cfs @ 10.00 hrs HW=576.45' TW=559.81' (Dynamic Tailwater) 2=Sharp-Crested Vee/Trap Weir (Controls 0.00 cfs) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 18 Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.079 ac, 71.88% Impervious, Inflow Depth > 3.37" for 10-yr event Inflow 3.85 cfs @ 12.14 hrs, Volume= 0.303 af Outflow = 3.85 cfs @ 12.14 hrs, Volume= 0.303 af, Atten= 0%, Lag= 0.0 min Primary 3.85 cfs @ 12.14 hrs, Volume= 0.303 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 578.52' @ 12.13 hrs Flood Elev= 584.71' Device Routing Invert Outlet Devices #1 Primary 577.00 12.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 577.00' / 571.56' S= 0.0800 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=3.64 cfs @ 12.14 hrs HW=578.43' (Free Discharge) -1=Culvert (Inlet Controls 3.64 cfs @ 4.64 fps) Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 3.70" for 10-yr event Inflow 1.53 cfs @ 12.13 hrs, Volume= 0.121 af Outflow = 1.53 cfs @ 12.13 hrs. Volume= 0.121 af, Atten= 0%, Lag= 0.0 min Primary 1.53 cfs @ 12.13
hrs. Volume= 0.121 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.61' @ 12.30 hrs Flood Elev= 585.40' Device Routing **Outlet Devices** Invert #1 **Primary** 580.38' 15.0" Round Culvert L= 177.0' Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.71' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=0.00 cfs @ 12.13 hrs HW=581.19' TW=581.24' (Dynamic Tailwater) -1=Culvert (Controls 0.00 cfs) Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 1.175 ac, 86.86% Impervious, Inflow Depth > 3.59" for 10-yr event Inflow Outflow = 4.44 cfs @ 12.13 hrs, Volume= 4.44 cfs @ 12.13 hrs, Volume= 0.351 af 0.351 af, Atten= 0%, Lag= 0.0 min Primary 4.44 cfs @ 12.13 hrs. Volume= 0.351 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.23' @ 12.13 hrs Flood Elev= 586.35' Device Routing Invert Outlet Devices #1 Primary 581.06' **15.0" Round Culvert** L= 95.0' CPP, square edge headwall, Ke= 0.500 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-yr Rainfall=4.87" Printed 9/15/2021 Page 19 Inlet / Outlet Invert= 581.06' / 580.04' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=3.96 cfs @ 12.13 hrs HW=582.19' TW=581.24' (Dynamic Tailwater) 1=Culvert (Outlet Controls 3.96 cfs @ 4.49 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.569 ac, 88.79% Impervious, Inflow Depth > 3.62" for 10-yr event Inflow = 5.97 cfs @ 12.13 hrs, Volume= 0.473 af Outflow = 5.26 cfs @ 12.21 hrs, Volume= 0.473 af, Atten= 12%, Lag= 4.6 min Primary = 5.26 cfs @ 12.21 hrs, Volume= 0.473 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 581.55' @ 12.21 hrs Surf.Area= 684 sf Storage= 891 cf Flood Elev= 586.31' Surf.Area= 502 sf Storage= 2,130 cf Plug-Flow detention time= 1.7 min calculated for 0.472 af (100% of inflow) Center-of-Mass det. time= 1.3 min (779.2 - 777.9) | Volume | Invert | Avail.Storage | Storage Description | |--------|---------|---------------|---| | #1 | 579.36' | 87 cf | 4.00'D x 6.95'H Vertical Cone/Cylinder | | #2 | 579.36' | 459 cf | 36.0" Round Pipe Storage | | | | | L= 65.0' S= 0.0038 '/' | | #3 | 579.36' | 117 cf | 15.0" Round Pipe Storage | | | | | L= 95.0' S= 0.0107 '/' | | #4 | 580.39' | 78 cf | 4.00'D x 6.23'H Vertical Cone/Cylinder | | #5 | 580.00' | 507 cf | 4.00'W x 116.00'L x 4.50'H Prismatoid | | | | | 2,088 cf Overall - 820 cf Embedded = 1,268 cf x 40.0% Voids | | #6 | 580.50' | 820 cf | 36.0" Round Pipe Storage Inside #5 | | | | | L= 116.0' S= 0.0050 '/' | | #7 | 581.06' | 65 cf | 4.00'D x 5.19'H Vertical Cone/Cylinder | | | | | | 2,134 cf Total Available Storage | Device | Routing | Invert | Outlet Devices | |--------|----------|---------|--| | #1 | Primary | 579.36' | 15.0" Round Culvert L= 61.0' Ke= 0.500 | | | | | Inlet / Outlet Invert= 579.36' / 578.98' S= 0.0062 '/' Cc= 0.900 | | | | | n= 0.012, Flow Area= 1.23 sf | | #2 | Device 1 | 579.36' | 13.2" Vert. Orifice/Grate C= 0.600 | | #3 | Device 2 | 579.35' | 12.3" Vert. Orifice/Grate C= 0,600 | | #4 | Device 2 | 581.40' | 10.0" Vert. Orifice/Grate C= 0.600 | | #5 | Device 2 | 582.00' | 4.0' long x 2.50' rise Sharp-Crested Rectangular Weir | | | | | 2 End Contraction(s) 3.0' Crest Height | Primary OutFlow Max=5.17 cfs @ 12.21 hrs HW=581.52' TW=578.64' (Dynamic Tailwater) -1=Culvert (Passes 5.17 cfs of 6.79 cfs potential flow) **-2=Orifice/Grate** (Passes 5.17 cfs of 5.80 cfs potential flow) -3=Orifice/Grate (Orifice Controls 5.11 cfs @ 6.19 fps) -4=Orifice/Grate (Orifice Controls 0.05 cfs @ 1.17 fps) -5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 20 ## **Summary for Subcatchment 1S: DA-1 TO CATCH BASINS** Runoff 0.80 cfs @ 12.13 hrs, Volume= 0.063 af, Depth> 4.59" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | <u> </u> | rea (sf) | CN I | Description | | | |----|------------|------------------|------------------|----------------------|-------------------|---------------| | * | | 7,195 | 98 i | mpervious | | | | | | 7,195 | | 100.00% Im | pervious A | Area | | /1 | Tc
min) | Length
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | 10.0 | (1001) | 11011/ | (10300) | (015) | Direct Entry. | ### Summary for Subcatchment 2S: DA-2 TO CATCH BASINS Runoff 1.09 cfs @ 12.13 hrs, Volume= 0.086 af, Depth> 4.52" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | A | rea (sf) | CN | Description | | | | |-------------|-----------------------|-----------------|--|-------------------|---------------|------| | * | 9,015 | 98 | impervious | | |
 | | * | 932 | 74 | hsgC grass | , open | | | | | 9,947
932
9,015 | | Weighted A
9.37% Perv
90.63% Imp | ious Ārea | эа | | | Tc
(min) | Length
(feet) | Slope
(ft/ft | | Capacity
(cfs) | Description |
 | | 10.0 | | | | | Direct Entry, |
 | ## Summary for Subcatchment 3S: DA-3 TO CATCH BASIN IN MAIN DRIVEWAY Runoff 4.84 cfs @ 12.14 hrs, Volume= 0.381 af, Depth> 4,24" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | Area (sf) | CN | Description | |---|----------------------------|----|--| | * | 31,510 | 98 | impervious | | * | 7,119 | 74 | hsgC grass, open, some mulch | | * | 6,093 | 72 | hsgC wooded, trees | | * | 2,258 | 98 | roof | | | 46,980
13,212
33,768 | 91 | Weighted Average
28.12% Pervious Area
71.88% Impervious Area | | | 55,700 | | 7 1.00 % impervious Area | Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC ______Page 21 | Tc
(min) | | Velocity
(ft/sec) | Capacity
(cfs) | Description | | |-------------|--|----------------------|-------------------|---------------|--| | 10.0 | | | | Direct Entry, | | # Summary for Subcatchment 4S: DA-4 TO CATCH BASINS Runoff = 1.00 cfs @ 12.14 hrs, Volume= 0.079 af, Depth> 4.03" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | A | rea (sf) | CN | Description | | | | |---|-------------|--------------------------|---------------|---------------------------------------|-------------------|---------------|------| | * | | 5,963 | 98 | impervious | | |
 | | * | | 4,221 | 74 | hsgC grass | , open | | | | | | 10,184
4,221
5,963 | 88 | Weighted A
41.45% Pe
58.55% Imp | rvious Area | | | | - | Tc
(min) | Length
(feet) | Slop
(ft/f | • | Capacity
(cfs) | Description | | | | 10.0 | | | | | Direct Entry, |
 | ## Summary for Subcatchment 5S: DA-5 TO CATCH BASINS Runoff : 3.35 cfs @ 12.13 hrs, Volume= 0.266 af, Depth> 4.56" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | A | rea (sf) | <u>CN</u> | Description | | | | | |---|-------------|---------------------------|----------------|--|-------------------|---------------|-----|---------------------------------------| | , | * | 28,942 | 98 | impervious | | | ··· | , , , , , , , , , , , , , , , , , , , | | | * | 1,482 | 74 | hsgC grass | , open | | | | | | | 30,424
1,482
28,942 | 97 | Weighted A
4.87% Perv
95.13% Imp | ious Area | ea | | | | _ | Tc
(min) | Length
(feet) | Slop
(ft/ft | - | Capacity
(cfs) | Description | | | | | 10.0 | - | | | | Direct Entry, | | | # Summary for Subcatchment 6S: DA-6 RUNOFF TO SWALE ON WEST SIDE OF LOT Runoff = 11.53 cfs @ 12.14 hrs, Volume= 0.909 af, Depth> 3.64" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 22 | | Area (sf) | CN | Description | | | | |-----|---------------------------------------|---------------|-------------|-------------------|---------------|----------| | * | 43,513 | 98 | impervious | | | <u> </u> | | * | 74,098 | 72 | hsgC woode | d, trees | | | | * | 12,925 | 98 | roof | | | | | | • • • • • • • • • • • • • • • • • • • | | | | ea | | | (mi | | Slop
(ft/l | • | Capacity
(cfs) | Description | | | 10 | 1.0 | | | | Direct Entry. | | ## Summary for Subcatchment 7S: DA-7 WESTERLY SLOPE OF OFFSITE Runoff 2.05 cfs @ 12.14 hrs, Volume= 0.162 af, Depth> 3.72" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | Area | (sf) | CN | Description | l | | | |----|--------|-------|--------|-------------|-------------|---------------------------------------|--| | * | 9 | 091 | 98 | impervious | | | | | * | 13, | 655 | _ 74 | hsgC grass | , open | | | | | 22, | 746 | 84 | Weighted A | verage | | | | | 13, | 655 | | | | | | | | 9, | 091 | | 39.97% lm | pervious Ar | ea | | | , | | ength | Slope | | Capacity | Description | | | (m | nin) (| feet) | (ft/ft | (ft/sec) | (cfs) | · · · · · · · · · · · · · · · · · · · | | | 11 | 0.0 | | | | | Direct Entry, | | # Summary for Subcatchment 8S: DA-8 OVERLAND TO LOWER POND Runoff 0.19 cfs @ 12.13 hrs, Volume= 0.015 af, Depth> 4.59" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time
Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | A | rea (sf) | CN | Description | <u> </u> | | |----|------------|------------------|------------------|-------------|-------------------|--------------| | * | | 1,702 | 98 | impervious | | | | | | 1,702 | | 100.00% In | pervious A | Area | | ſr | Tc
nin) | Length
(feet) | Slope
(ft/ft) | | Capacity
(cfs) | | | | 10.0 | 1.001/ | (1010) | (.4600) | 1010/ | Direct Entry | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 23 ### Summary for Subcatchment 9S: DA-9 EASTERLY SLOPE TO OFFSITE Runoff = 2.16 cfs @ 12.15 hrs, Volume= 0.173 af, Depth> 2.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | A | rea (sf) | CN | Description | | | | | | |---|-------------|------------------------------|-----------------|--|-------------------|---------------|--|--|--| | • | • | 921 | 98 | impervious | | | | | | | * | * | 13,218 | 74 | nsgC grass, open | | | | | | | - | k
 | 17,194 72 hsgC wooded, trees | | | | | | | | | | | 31,333
30,412
921 | | Weighted A
97.06% Per
2.94% Impe | vious Area | a | | | | | _ | Tc
(min) | Length
(feet) | Slope
(ft/ft | | Capacity
(cfs) | Description | | | | | | 10.0 | | | | | Direct Entry, | | | | ## Summary for Subcatchment 10S: DA-10 OVERLAND TO SMALL POND Runoff 0.27 cfs @ 12.15 hrs, Volume= 0.021 af, Depth> 2.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | Area (sf | <u> </u> | <u> </u> | escription | | | | |-----------------|--------------------|----------|----------------|----------------------|-------------------|---------------|---| | * | 3,852 | 2 74 | 4 h | sgC grass | , open | | <u>, , , , , , , , , , , , , , , , , </u> | | | ea | | | | | | | | -
<u>(mi</u> | Гс Leng
n) (fee | | lope
ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | 10 | .0 | | | | | Direct Entry, | | ## Summary for Subcatchment 16S: NORTH WING ROOF Runoff = 1.43 cfs @ 12.13 hrs, Volume= 0.114 af, Depth> 4.59" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | | A | rea (sf) | CN | Description | | | |---|-------------|------------------|--------------------------|----------------------|---------------------------------------|--------------| | * | | 12,979 | 98 | roof | · · · · · · · · · · · · · · · · · · · | | | | | 12,979 | 979 100.00% Impervious A | | | Area | | (| Tc
(min) | Length
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | 10.0 | | | | | Direct Entry | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 24 # Summary for Subcatchment 17S: DA-11 SMALL AREA OF FIRE LANE TO TRENCH DRAIN Runoff 0.34 cfs @ 12.14 hrs, Volume= 0.027 af, Depth> 4.24" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5,95" | | Ar | ea (sf) | _CN | Description | <u> </u> | | | | | | | |----|------------|------------------|-----------------|------------------------|----------------------|---------------|--|--|--|--|--| | * | | 2,311 | 98 | impervious | mpervious pav | | | | | | | | * | | 1,026 | 74 | pervious gr | pervious grass | | | | | | | | | | 3,337 | 91 | Weighted A | verage | | | | | | | | | | 1,026 | | 30.75% Pe | 30.75% Pervious Area | | | | | | | | | | 2,311 | | 69.25% lm _l | pervious Ar | rea | | | | | | | (n | Tc
nin) | Length
(feet) | Slope
(ft/ft | 7 | Capacity
(cfs) | | | | | | | | 1 | 0.0 | | | | - <u>-</u> - | Direct Entry, | | | | | | # Summary for Subcatchment 18S: NEW BUILDING ADDITION ROOF AREA Runoff = 0.80 cfs @ 12.13 hrs, Volume= 0.064 af, Depth> 4.59" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 25-yr Rainfall=5.95" | _ | A | rea (sf) | CN | Description | | | |---|-------------|------------------|-----------------|-------------|-------------------|---------------| | _ | | 7,255 | 98 | Roofs, HSC | G C | | | | | 7,255 | | 100.00% Im | pervious A | Area | | _ | Tc
(min) | Length
(feet) | Slope
(ft/ft | 7 | Capacity
(cfs) | Description | | _ | 10.0 | | | | | Direct Entry, | ## Summary for Reach 6R: Swale - runs W to N Inflow Area = 3.295 ac, 48.37% Impervious, Inflow Depth > 3.73" for 25-yr event Inflow 12.96 cfs @ 12.14 hrs, Volume= 1.023 af Outflow 12.71 cfs @ 12.18 hrs, Volume= 1.021 af, Atten= 2%, Lag= 2.5 min Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Max. Velocity= 4.42 fps, Min. Travel Time= 1.9 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 4.7 min Peak Storage= 1.435 cf @ 12.18 hrs Average Depth at Peak Storage= 0.51' Bank-Full Depth= 1.50' Flow Area= 13.3 sf, Capacity= 106.43 cfs #3 Discarded Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 25 4.00' x 1.50' deep channel, n= 0.025 Side Slope Z-value= 5.0 1.5 '/' Top Width= 13.75' Length= 500.0' Slope= 0.0200 '/' Inlet Invert= 573.00', Outlet Invert= 563.00' # **Summary for Pond 1P: Northerly POND** Inflow Area = 4.991 ac, 60.62% Impervious, Inflow Depth > 3.95" for 25-yr event Inflow = 19.68 cfs @ 12.19 hrs, Volume= 1.641 af Outflow = 19.67 cfs @ 12.20 hrs, Volume= 1.548 af, Atten= 0%, Lag= 0.5 min Discarded = 0.06 cfs @ 12.20 hrs, Volume= 0.045 af Primary = 19.61 cfs @ 12.20 hrs, Volume= 1.503 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 563.12' @ 12.20 hrs Surf.Area= 2,684 sf Storage= 4,834 cf Plug-Flow detention time= 30.4 min calculated for 1.547 af (94% of inflow) Center-of-Mass det. time= 9.9 min (795.7 - 785.8) | <u>Volume</u> | Inv | <u>ert Avail.Sto</u> | I.Storage Storage Description | | | | | | |---------------|---------|----------------------|--|---|----|--|--|--| | #1 | 559.4 | 44' 7,5 | 41 cf Norther | ly Pond from Swale (Prismatic) Listed below (Recald | c) | | | | | Elevatio | | Surf.Area
(sq-ft) | Inc.Store
(cubic-feet) | Cum.Store
(cubic-feet) | | | | | | 559.4 | 14 | 0 | 0 | ó | | | | | | 560.0 | 00 | 431 | 121 | 121 | | | | | | 562.0 | | 1,819 | 2,250 | 2,371 | | | | | | 562.7 | | 2,337 | 1,642 | 4,012 | | | | | | 563.0 | | 2,585 | 517 | 4,529 | | | | | | 564.0 |)() | 3,438 | 3,012 | 7,541 | | | | | | Device | Routing | Invert | Outlet Device | s | | | | | | #1 | Primary | 562.78' | 40.0' long x 9 | 9.0' breadth Broad-Crested Rectangular Weir | | | | | | | | | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 | Coef. (English) 2.46 2.55 2.70 2.69 2.68 2.68 2.67 2.64 2.64 2.64 | | | | | | | | | 2.65 2.64 2.65 2.65 2.66 2.67 2.69 | | | | | | | #2 | Primary | 563.30' | 40.0' long (Profile 29) Broad-Crested Rectangular Weir | | | | | | | | | | | 0.49 0.98 1.48 | | | | | | | | | Coet. (English | 1) 3.48 3.50 3.48 | | | | | 559.44' 1.020 in/hr Exfiltration over Horizontal area Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 26 Discarded OutFlow Max=0.06 cfs @ 12.20 hrs HW=563.11' (Free Discharge) —3=Exfiltration (Exfiltration Controls 0.06 cfs) Primary OutFlow Max=19.53 cfs @ 12.20 hrs HW=563.11' (Free Discharge) **−1=Broad-Crested Rectangular Weir** (Weir Controls 19.53 cfs @ 1.46 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) ### Summary for Pond 2P: Small Det. Pond Inflow Area = 1.657 ac, 84.05% Impervious, Inflow Depth > 4.38" for 25-yr event Inflow 7.02 cfs @ 12.21 hrs, Volume= 0.605 af 6.93 cfs @ 12.22 hrs, Volume= Outflow = 0.605 af, Atten= 1%, Lag= 0.7 min Primary 5.95 cfs @ 12.24 hrs, Volume= 0.595 af Secondary = 1.01 cfs @ 12.21 hrs, Volume= 0.011 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 579.21' @ 12.24 hrs Surf Area= 185 sf Storage= 276 cf Plug-Flow detention time= 0.4 min calculated for 0.605 af (100% of inflow) Center-of-Mass det. time= 0.3 min (779.7 - 779.4) | Volume | Invert | Avail.Sto | rage S | torage De | escription | | |---------------------|---------|-----------------|--------------------|-----------|---------------------------|-----------------------------------| | #1 | 576.21' | 4 | 57 cf S | mall Dete | ntion Pond | (Prismatic) Listed below (Recalc) | | Elevation
(feet) | | .Area
sq-ft) | Inc.St
cubic-fe | | Cum.Store
(cubic-feet) | | | 576.21 | | 0 | | 0 | 0 | | | 577.00 | | 56 | | 22 | 22 | | | 578.00 | | 108 | | 82 | 104 | | | 579.00 | | 162 | • | 135 | 239 | | | 580.00 | | 273 | 2 | 218 | 457 | | | Device Re | outing | Invert | Outlet I | Devices | | | | #1 Primary 576.21 | 12.0" Round Culvert to Large Pond | |---------------------|--| | | L= 49.0' CPP, square edge headwall, Ke= 0.500 | | | Inlet / Outlet Invert= 576.21' / 575.71' S= 0.0102 '/' Cc= 0.900 | | | n= 0.012, Flow Area= 0.79 sf | | #2 Secondary 579.00 | 120.0 deg x 5.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir | | | Cv= 2.48 (C= 3.10) | Primary OutFlow Max=5.84 cfs @ 12.24 hrs HW=579.12' TW=563.10' (Dynamic Tailwater) 1=Culvert to Large Pond (Barrel Controls 5.84 cfs @ 7.43 fps) Secondary OutFlow Max=0.93 cfs @ 12.21 hrs HW=579.15' TW=563.11'
(Dynamic Tailwater) 1.19 fps) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 27 ## Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.079 ac, 71.88% Impervious, Inflow Depth > 4.24" for 25-yr event Inflow 4.84 cfs @ 12.14 hrs, Volume= 0.381 af Outflow 4.84 cfs @ 12.14 hrs, Volume= 0.381 af, Atten= 0%, Lag= 0.0 min Primary 4.84 cfs @ 12.14 hrs, Volume= 0.381 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 579.11' @ 12.13 hrs Flood Elev= 584.71' = Device Routina Invert Outlet Devices 577.00' #1 Primary 12.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 577.00' / 571.56' S= 0.0800 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=4.58 cfs @ 12.14 hrs HW=578.97' (Free Discharge) **1=Culvert** (Inlet Controls 4.58 cfs @ 5.84 fps) # Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 4.55" for 25-yr event Inflow 1.88 cfs @ 12.13 hrs, Volume= 0.149 af Outflow 1.88 cfs @ 12.13 hrs, Volume= 0.149 af, Atten= 0%, Lag= 0.0 min Primary 1.88 cfs @ 12.13 hrs, Volume= 0.149 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.16' @ 12.30 hrs Flood Elev= 585.40' Device Routing Invert Outlet Devices #1 Primary 580.38 **15.0" Round Culvert** L= 177.0' Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.71' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=0.00 cfs @ 12.13 hrs HW=581.41' TW=581.72' (Dynamic Tailwater) -1=Culvert (Controls 0.00 cfs) ## Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 1.175 ac, 86.86% Impervious, Inflow Depth > 4.44" for 25-yr event Inflow 5.49 cfs @ 12.13 hrs, Volume= 0.435 af Outflow Primary 5.49 cfs @ 12.13 hrs, Volume= 5.49 cfs @ 12.13 hrs, Volume= 0.435 af, Atten= 0%, Lag= 0.0 min 0.435 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.50' @ 12.10 hrs Flood Elev= 586.35' Device Routing Invert Outlet Devices #1 Primary 581.06' 15.0" Round Culvert L= 95.0' CPP, square edge headwall, Ke= 0.500 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-yr Rainfall=5.95" Printed 9/15/2021 Page 28 Inlet / Outlet Invert= 581.06' / 580.04' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=4.56 cfs @ 12.13 hrs HW=582.49' TW=581.72' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 4.56 cfs @ 4.08 fps) ## Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.569 ac, 88.79% Impervious, Inflow Depth > 4.47" for 25-yr event Inflow 7.37 cfs @ 12.13 hrs, Volume= 0.584 af Outflow = 6.78 cfs @ 12.21 hrs, Volume= 0.584 af, Atten= 8%, Lag= 4.5 min Primary 6.78 cfs @ 12.21 hrs, Volume= 0.584 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 582.10' @ 12.21 hrs Surf.Area= 631 sf Storage= 1.207 cf Flood Elev= 586.31' Surf.Area= 502 sf Storage= 2,130 cf Plug-Flow detention time= 1.9 min calculated for 0.584 af (100% of inflow) Center-of-Mass det. time= 1.5 min (778.7 - 777.3) | Volume | Invert | Avail.Storage | Storage Description | |-----------|----------------|---------------|---| | #1 | 579.36' | 87 cf | 4.00'D x 6.95'H Vertical Cone/Cylinder | | #2 | 579.36' | 459 cf | 36.0" Round Pipe Storage | | | | | L= 65.0' S= 0.0038 '/' | | #3 | 579.36' | 117 cf | 15.0" Round Pipe Storage | | | | | L= 95.0' S= 0.0107 '/' | | #4 | 580.39' | 78 cf | 4.00'D x 6.23'H Vertical Cone/Cylinder | | #5 | 580.00' | 507 cf | 4.00'W x 116.00'L x 4.50'H Prismatoid | | | | | 2,088 cf Overall - 820 cf Embedded = 1,268 cf x 40.0% Voids | | #6 | 580.50' | 820 cf | 36.0" Round Pipe Storage Inside #5 | | | | | L= 116.0' S= 0.0050 '/' | | <u>#7</u> | <u>581.06'</u> | 65 cf | 4.00'D x 5.19'H Vertical Cone/Cylinder | 2,134 cf Total Available Storage | Device | Routing | Invert | Outlet Devices | |--------|----------|---------|--| | #1 | Primary | 579.36' | 15.0" Round Culvert L= 61.0' Ke= 0.500 | | | - | | Inlet / Outlet Invert= 579.36' / 578.98' S= 0.0062 '/' Cc= 0.900 | | | | | n= 0.012, Flow Area= 1.23 sf | | #2 | Device 1 | 579.36' | 13.2" Vert. Orifice/Grate C= 0.600 | | #3 | Device 2 | 579.35' | 12.3" Vert. Orifice/Grate C= 0.600 | | #4 | Device 2 | 581.40' | 10.0" Vert. Orifice/Grate C= 0.600 | | #5 | Device 2 | 582.00' | 4.0' long x 2.50' rise Sharp-Crested Rectangular Weir | | | | | 2 End Contraction(s) 3.0 Crest Height | Primary OutFlow Max=6.71 cfs @ 12.21 hrs HW=582.06' TW=579.15' (Dynamic Tailwater) 1=Culvert (Passes 6.71 cfs of 8.10 cfs potential flow) -2=Orifice/Grate (Orifice Controls 6.71 cfs @ 7.06 fps) —3=Orifice/Grate (Passes < 5.89 cfs potential flow) -4=Orifice/Grate (Passes < 1.29 cfs potential flow) -5=Sharp-Crested Rectangular Weir (Passes < 0.20 cfs potential flow) Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 29 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC ### Summary for Subcatchment 1S: DA-1 TO CATCH BASINS Runoff 1.02 cfs @ 12.13 hrs, Volume= 0.081 af. Depth> 5.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfali=7.61" | | A | rea (sf) | CN [| Description | | | | |---|-------------|------------------|------------------|----------------------|-------------------|---------------|--| | * | | 7,195 | 98 i | mpervious | | | | | | | 7,195 | | 100.00% Im | npervious A | Area | | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | | 10.0 | | | | | Direct Entry. | | ## Summary for Subcatchment 2S: DA-2 TO CATCH BASINS Runoff 1.40 cfs @ 12.13 hrs, Volume= 0.111 af, Depth> 5.83" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfali=7.61" | _ | Α | rea (sf) | CN | Description | | | | | | | | |---|-------------|-----------------------|----------------|--|-------------------|---------------|--|--|--|--|--| | 1 | * | 9,015 | 98 | impervious | mpervious | | | | | | | | • | k | 932 | 74 | hsgC grass | hsgC grass, open | | | | | | | | | | 9,947
932
9,015 | 96 | Weighted A
9.37% Perv
90.63% Imp | ious Ārea | ea | | | | | | | - | Tc
(min) | Length
(feet) | Slop
(ft/ft | , | Capacity
(cfs) | Description | | | | | | | | 10.0 | | | | | Direct Entry, | | | | | | # Summary for Subcatchment 3S: DA-3 TO CATCH BASIN IN MAIN DRIVEWAY Runoff 6.34 cfs @ 12.13 hrs, Volume= 0.501 af, Depth> 5.58" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | Area (sf) | CN | Description | | | | |---|-----------|----|------------------------------|--|--|--| | * | 31,510 | 98 | impervious | | | | | * | 7,119 | 74 | nsgC grass, open, some mulch | | | | | * | 6,093 | 72 | hsgC wooded, trees | | | | | * | 2,258 | 98 | roof | | | | | | 46,980 | 91 | Weighted Average | | | | | | 13,212 | | 28.12% Pervious Area | | | | | | 33,768 | | 71.88% Impervious Area | | | | Type III 24-hr 100-yr Rainfall=7.61" Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Printed 9/15/2021 Page 30 | _ | Tc
(min) | Length
(feet) | Slope
(ft/ft) | Capacity
(cfs) | Description | |---|-------------|------------------|------------------|-------------------|--------------| | | 10.0 | | |
 | Direct Entry | ## Summary for Subcatchment 4S: DA-4 TO CATCH BASINS Runoff = 1.33 cfs @ 12.14 hrs, Volume= 0.105 af, Depth> 5.37" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | Α | rea (sf) | CN | Description | <u>L</u> | | | | |----|------------|--------------------------|----------------|---------------------------------------|-------------------|---------------|--|--| | * | | 5,963 | 98 | impervious | | | | | | * | | 4,221 | 74 | hsgC grass | , open | | | | | | | 10,184
4,221
5,963 | 88 | Weighted A
41.45% Pe
58.55% Imp | rvious Area | | | | | (] | Tc
min) | Length
(feet) | Slop
(ft/ft | , | Capacity
(cfs) | Description | | | | | 10.0 | | | | ·-·· | Direct Entry, | | | ## Summary for Subcatchment 5S: DA-5 TO CATCH BASINS Runoff 4.29 cfs @ 12.13 hrs, Volume= 0.341 af, Depth> 5.86" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | Are | a (sf) | CN | Description | L | | | |-----------|------|--------|-----------------|-------------|-------------------|---------------------------------------|--| | * | 28 | 3,942 | 98 | impervious | | · · · · · · · · · · · · · · · · · · · | | | * | | 1,482 | | hsgC grass | | | | | | 30 | 0,424 | 97 | Weighted A | verage | | | | | - | 1,482 | | 4.87% Perv | | | | | | 28 | 3,942 | | 95.13% lm | pervious Ar | a | | | <u>(r</u> | Tc L | ength | Slope
(ft/ft | , | Capacity
(cfs) | Description | | | • | 10.0 | | | | | Direct Entry, | | # Summary for Subcatchment 6S: DA-6 RUNOFF TO SWALE ON WEST SIDE OF LOT Runoff = 15.79 cfs @ 12.14 hrs, Volume= 1.244 af, Depth> 4.98" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" Type III 24-hr 100-yr Rainfall=7.61" Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Printed 9/15/2021 Page 31 | | Area (sf) | CN | Description | | | | |-----------|-------------|------|--------------|-------------|-------------|---| | * | 43,513 | 98 | impervious | | | | | * | 74,098 |
72 | hsgC wood | ed, trees | | | | * | 12,925 | 98 | roof | | | | | | 130,536 | 83 | Weighted A | verage | | _ | | | 74,098 | | 56.76% Per | | | | | | 56,438 | | 43.24% lmp | pervious Ar | ea | | | | Tc Length | Slop | e Velocity | Capacity | Description | | | <u>(n</u> | nin) (feet) | (ft/ | ft) (ft/sec) | (cfs) | · | | # Summary for Subcatchment 7S: DA-7 WESTERLY SLOPE OF OFFSITE Direct Entry, Runoff = 10.0 2.80 cfs @ 12.14 hrs, Volume= 0.220 af, Depth> 5.06" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | <u> </u> | rea (sf) | CN | Description | | | | |-----------|----------|-----------------------------|--------|-------------|-------------|---------------|--------| | * | | 9,091 | 98 | impervious | | | | | * | | 13,655 | 74 | hsgC grass | , open | | | | | | 22,746 | 84 | Weighted A | verage | | ······ | | | | 13,655 | | 60.03% Per | rvious Area | a | | | | | 9,091 39.97% Impervious Are | | | | rea | | | , | Тс | Length | Slope | | Capacity | Description | | | <u>(n</u> | nin) | (feet) | (ft/ft |) (ft/sec) | (cfs) | | | | 1 | 0.0 | | | | | Direct Entry, | | # Summary for Subcatchment 8S: DA-8 OVERLAND TO LOWER POND Runoff 0.24 cfs @ 12.13 hrs, Volume= 0.019 af, Depth> 5.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | Description | | | |---|-------------|------------------|------------------|-------------------|-------------------|---------------| | * | | 1,702 | 98 | impervious | | | | | | 1,702 | -11.5 | 100.00% lm | pervious A | Area | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | Velocity (ft/sec) | Capacity
(cfs) | Description | | - | 10.0 | (icci) | (IVIL | (10360) | (615) | Direct Entry. | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 32 # Summary for Subcatchment 9S: DA-9 EASTERLY SLOPE TO OFFSITE Runoff = 3.15 cfs @ 12.14 hrs, Volume= 0.250 af, Depth> 4.18" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | A | rea (sf) | CN | <u>Description</u> | | | | | | |---|-------|----------|---------|--------------------|--------------|---------------|--|--|--| | * | | 921 | 98 | impervious | | | | | | | * | | 13,218 | | | | | | | | | * | | 17,194 | 72 | hsgC wood | ed, trees | | | | | | | | 31,333 | 74 | Weighted A | verage | | | | | | | | 30,412 | | 97.06% Per | vious Area | | | | | | | | 921 | ; | 2.94% Impe | ervious Area | a | | | | | | Tc | Length | Slope | , | Capacity | Description | | | | | _ | (min) | (feet) | (ft/ft) | (ft/sec) | (cfs) | | | | | | | 10.0 | | | | | Direct Entry. | | | | ## Summary for Subcatchment 10S: DA-10 OVERLAND TO SMALL POND Runoff 0.39 cfs @ 12.14 hrs, Volume= 0.031 af, Depth> 4.18" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | _ | Α | rea (sf) | CN I | Description | | | | | | | |---|-------|----------|--------------------------|-------------|----------|---------------|--|--|--|--| | * | | 3,852 | 74 | nsgC grass | , open | | | | | | | | | 3,852 | 52 100.00% Pervious Area | | | | | | | | | | Тс | Length | Slope | • | Capacity | Description | | | | | | _ | (min) | (feet) | (ft/ft) | (ft/sec) | (cfs) | | | | | | | | 10.0 | | | | 7/- | Direct Entry, | | | | | # Summary for Subcatchment 16S: NORTH WING ROOF Runoff _ 1.84 cfs @ 12.13 hrs, Volume= 0.146 af, Depth> 5.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | <u> </u> | rea (sf) | CN I | Description | | | | |-----------|----------|----------|---------|-------------|-------------|---------------|------| | * | | 12,979 | 98 r | oof | | |
 | | | | 12,979 | | 100.00% In | npervious A | rea | | | | Тс | Length | Slope | Velocity | Capacity | Description | | | <u>(r</u> | nin) | (feet) | (ft/ft) | (ft/sec) | (cfs) | • | | | • | 10.0 | | | <u>*</u> | | Direct Entry, |
 | Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 33 ## Summary for Subcatchment 17S: DA-11 SMALL AREA OF FIRE LANE TO TRENCH DRAIN Runoff 0.45 cfs @ 12.13 hrs, Volume= 0.036 af. Depth> 5.58" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfall=7.61" | | Area (sf) | CN | Description | | | | |-----|-----------|-------|------------------------|-------------|---------------|--| | * | 2,311 | 98 | impervious | pav | | | | * | 1,026 | 74 | pervious gr | ass | | | | | 3,337 | 91 | Weighted A | verage | | | | | 1,026 | | 30.75% Per | ∿ious Area | | | | | 2,311 | | 69.25% lm _l | pervious An | еа | | | | Γc Length | Slop | e Velocity | Capacity | Description | | | (mi | Q | (ft/f | | (cfs) | Besonption | | | 10 | .0 | | | | Direct Entry, | | ## Summary for Subcatchment 18S: NEW BUILDING ADDITION ROOF AREA Runoff 1.03 cfs @ 12.13 hrs, Volume= 0.082 af, Depth> 5.89" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Type III 24-hr 100-yr Rainfail=7.61" | A | rea (sf) | CN E | Description | | | | |-------------|------------------|------------------|----------------------|-------------------|---------------|-------| | | 7,255 | 98 F | Roofs, HSC | C | | _ | | · | 7,255 | 1 | 00.00% In | rea |
 | | | Tc
(min) | Length
(feet) | Slope
(ft/ft) | Velocity
(ft/sec) | Capacity
(cfs) | Description | | | 10.0 | | 71 | | | Direct Entry, |
_ | ## Summary for Reach 6R: Swale - runs W to N Inflow Area = 3.295 ac, 48.37% Impervious, Inflow Depth > 5.06" for 100-yr event Inflow Outflow 17.63 cfs @ 12.14 hrs. Volume= 1.390 af 1.387 af, Atten= 2%, Lag= 2.4 min Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs 17.27 cfs @ 12.18 hrs, Volume= Max. Velocity= 4.83 fps, Min. Travel Time= 1.7 min Avg. Velocity = 1.96 fps, Avg. Travel Time= 4.3 min Peak Storage= 1,782 cf @ 12.18 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 1.50' Flow Area= 13.3 sf, Capacity= 106.43 cfs Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 34 4.00' x 1.50' deep channel, n= 0.025 Side Slope Z-value= 5.0 1.5 '/' Top Width= 13.75' Length= 500.0' Slope= 0.0200 '/' Inlet Invert= 573.00', Outlet Invert= 563.00' ### **Summary for Pond 1P: Northerly POND** Inflow Area = 4.991 ac, 60.62% Impervious, Inflow Depth > 5.27" for 100-yr event Inflow = 26.48 cfs @ 12.19 hrs, Volume= 2.192 af Outflow = 26.54 cfs @ 12.20 hrs, Volume= 2.099 af, Atten= 0%, Lag= 0.5 min Discarded = 0.06 cfs @ 12.20 hrs, Volume= 0.046 af Primary = 26.47 cfs @ 12.20 hrs, Volume= 2.053 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 563.19' @ 12.20 hrs Surf.Area= 2,744 sf Storage= 5,026 cf Plug-Flow detention time= 23.1 min calculated for 2.076 af (95% of inflow) Center-of-Mass det. time= 7.8 min (791.5 - 783.7) | Volume | Inver | t Avail.Sto | rage Storage | e Description | | |----------------|---------------------------------------|----------------------|---------------------------|--|-------------| | #1 | 559.44 | l' 7,5 | 41 cf Northe | rly Pond from Swale (Prismatic) Listed below | (Recalc) | | Elevation (fee | · · · · · · · · · · · · · · · · · · · | Gurf.Area
(sq-ft) | Inc.Store
(cubic-feet) | Cum.Store
(cubic-feet) | • | | 559.4 | 14 | 0 | Ó | 0 | | | 560.0 | | 431 | 121 | 121 | | | 562.0 | | 1,819 | 2,250 | 2,371 | | | 562.7 | | 2,337 | 1,642 | 4,012 | | | 563.0 | | 2,585 | 517 | 4,529 | | | 564.0 | 00 | 3,438 | 3,012 | 7,541 | | | Device | Routing | Invert | Outlet Devic | 98 | | | #1 | Primary | 562.78 | 40.0' long x | 9.0' breadth Broad-Crested Rectangular Weir | | | | | | | 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1. | 80 2.00 | | | | | | 50 4.00 4.50 5.00 5.50 | | | | | | | h) 2.46 2.55 2.70 2.69 2.68 2.68 2.67 2.64 | 1 2.64 2.64 | | | | | | 65 2.65 2.66 2.67 2.69 | | | #2 | Primary | 563.30' | | Profile 29) Broad-Crested Rectangular Weir | | | | | | | 0.49 0.98 1.48 | | | 110 | D | | | h) 3.48 3.50 3.48 | | | #3 | Discarded | 559,44' | 1.020 in/hr E | xfiltration over Horizontal area | | Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Page 35 Discarded OutFlow Max=0.06 cfs @ 12.20 hrs HW=563.18' (Free Discharge) Primary OutFlow Max=26.28 cfs @ 12.20 hrs HW=563.18' (Free Discharge) -1=Broad-Crested Rectangular Weir (Weir Controls 26.28 cfs @ 1.62 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) ### Summary for Pond 2P: Small Det. Pond Inflow Area = 1.657 ac, 84.05% Impervious, Inflow Depth > 5.69" for 100-yr event Inflow 8.71 cfs @ 12.21 hrs, Volume= 0.786 af 9.12 cfs @ 12.21 hrs, Volume= Outflow 0.786 af, Atten= 0%, Lag= 0.0 min Primary = 6.07 cfs @ 12.21 hrs, Volume= 0.739 af Secondary = 3.05 cfs @ 12.21 hrs. Volume= 0.047 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 579.32' @ 12.21 hrs Surf Area= 198 sf Storage= 297 cf Plug-Flow detention time= 0.4 min calculated for 0.778 af (99% of inflow) Center-of-Mass det. time= 0.3 min (779.2 - 778.9) | <u>Volume</u> | Inve | ert Avail.Sto | rage Storage | e Description | | |------------------|---------|----------------------|---------------------------|--|-------------| | #1 | 576.2 | :1' 4: | 57 cf Small D | Detention Pond (Prismatic) Listed below (Recalc) | | | Elevatio
(fee | | Surf.Area
(sq-ft) |
Inc.Store
(cubic-feet) | Cum.Store
(cubic-feet) | | | 576.2 | 1 | 0 | 0 | 0 | | | 577.0 | 0 | 56 | 22 | 22 | | | 578.0 | | 108 | 82 | 104 | | | 579.0 | | 162 | 135 | 239 | | | 580.0 | 0 | 273 | 218 | 457 | | | Device | Routing | Invert | Outlet Device | es | | | #1 | Primary | 576.21' | 12.0" Round | Culvert to Large Pond | | | | | | | P, square edge headwall, Ke= 0.500 | | | | | | | Invert= 576.21' / 575.71' S= 0.0102 '/' Cc= 0.900 | | | | | | | ow Area= 0.79 sf | | | #2 | Seconda | ry 579.00' | 120.0 deg x 5 | 5.0' long x 1.00' rise Sharp-Crested Vee/Trap Weir | | Primary OutFlow Max=6.06 cfs @ 12.21 hrs HW=579.31' TW=563.18' (Dynamic Tailwater) 1=Culvert to Large Pond (Barrel Controls 6.06 cfs @ 7.71 fps) Cv= 2.48 (C= 3.10) Secondary OutFlow Max=2.88 cfs @ 12.21 hrs HW=579.31' TW=563.18' (Dynamic Tailwater) **1.69** fps) **2=Sharp-Crested Vee/Trap Weir** (Weir Controls 2.88 cfs @ 1.69 fps) Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 36 ## Summary for Pond 3P: CB IN MAIN DRIVEWAY TO ABUTTING LOT Inflow Area = 1.079 ac, 71.88% Impervious, Inflow Depth > 5.58" for 100-yr event Inflow 6.34 cfs @ 12.13 hrs, Volume= 0.501 af Outflow = 6.34 cfs @ 12.13 hrs, Volume= 0.501 af, Atten= 0%, Lag= 0.0 min Primary 6.34 cfs @ 12.13 hrs. Volume= 0.501 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 580.27' @ 12.13 hrs Primary Flood Elev= 584.71' Device Routing #1 Invert Outlet Devices 577.00 12.0" Round Culvert L= 68.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 577.00' / 571.56' S= 0.0800 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=6.02 cfs @ 12.13 hrs HW=580.03' (Free Discharge) **1-Culvert** (Inlet Controls 6.02 cfs @ 7.66 fps) ## Summary for Pond 8R: DMH with 15" Drainage Pipe Inflow Area = 0.394 ac, 94.56% Impervious, Inflow Depth > 5.85" for 100-vr event Inflow 2.42 cfs @ 12.13 hrs, Volume= 0.192 af Outflow 2.42 cfs @ 12.13 hrs, Volume= 0.192 af, Atten= 0%, Lag= 0.0 min Primary 2.42 cfs @ 12.13 hrs. Volume= 0.192 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 583.35' @ 12.31 hrs **Primary** Flood Elev= 585.40' Device Routing #1 Invert Outlet Devices 580.38 15.0" Round Culvert L= 177.0' Ke= 0.500 Inlet / Outlet Invert= 580.38' / 579.71' S= 0.0038 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=0.00 cfs @ 12.13 hrs HW=581.85' TW=582.54' (Dynamic Tailwater) --1=Culvert (Controls 0.00 cfs) # Summary for Pond 11R: DMH with 15" Drainage Pipe Inflow Area = 1.175 ac, 86.86% Impervious, Inflow Depth > 5.75" for 100-yr event Inflow = 7.10 cfs @ 12.13 hrs, Volume= 0.563 af Outflow 7.10 cfs @ 12.13 hrs, Volume= 0.563 af, Atten= 0%, Lag= 0.0 min Primary 7.10 cfs @ 12.13 hrs, Volume= 0.563 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 583.94' @ 12.27 hrs Flood Elev= 586.35' Device Routing **Outlet Devices** Invert #1 Primary 581.06 15.0" Round Culvert L= 95.0' CPP, square edge headwall, Ke= 0.500 Prepared by THOMPSON-LISTON Associates, Inc. HydroCAD® 10.00-26 s/n 00422 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-yr Rainfall=7.61" Printed 9/15/2021 Page 37 Inlet / Outlet Invert= 581.06' / 580.04' S= 0.0107 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf Primary OutFlow Max=4.46 cfs @ 12.13 hrs HW=583.24' TW=582.55' (Dynamic Tailwater) 1=Culvert (Outlet Controls 4.46 cfs @ 3.64 fps) ### Summary for Pond 12R: DMH 12 OUT TO SMALL POND Inflow Area = 1.569 ac, 88.79% Impervious, Inflow Depth > 5.78" for 100-yr event Inflow = 9.52 cfs @ 12.13 hrs, Volume= 0.755 af Outflow = 8.36 cfs @ 12.21 hrs, Volume= 0.755 af, Atten= 12%, Lag= 4.7 min Primary = 8.36 cfs @ 12.21 hrs, Volume= 0.755 af Routing by Dyn-Stor-Ind method, Time Span= 10.00-20.00 hrs, dt= 0.10 hrs Peak Elev= 583.25' @ 12.21 hrs Surf.Area= 502 sf Storage= 1,721 cf Flood Elev= 586.31' Surf.Area= 502 sf Storage= 2,130 cf Plug-Flow detention time= 2.1 min calculated for 0.747 af (99% of inflow) Center-of-Mass det. time= 1.7 min (778.3 - 776.7) | <u>Volume</u> | Invert | Avail.Storage | Storage Description | |---------------|---------|---------------|---| | #1 | 579.36' | 87 cf | 4.00'D x 6.95'H Vertical Cone/Cylinder | | #2 | 579.36' | | 36.0" Round Pipe Storage | | | | | L= 65.0' S= 0.0038 '/' | | #3 | 579.36' | 117 cf | 15.0" Round Pipe Storage | | | | | L= 95.0' S= 0.0107 '/' | | #4 | 580.39' | 78 cf | 4.00'D x 6.23'H Vertical Cone/Cylinder | | #5 | 580.00' | 507 cf | 4.00'W x 116.00'L x 4.50'H Prismatoid | | | | | 2,088 cf Overall - 820 cf Embedded = 1,268 cf x 40.0% Voids | | #6 | 580.50' | 820 cf | 36.0" Round Pipe Storage Inside #5 | | | | | L= 116.0' S= 0.0050 '/' | | #7 | 581.06' | 65 cf | 4.00'D x 5.19'H Vertical Cone/Cylinder | | | | 0.404.6 | | 2,134 cf Total Available Storage | Device | Routing | Invert | Outlet Devices | |--------|----------|---------|--| | #1 | Primary | 579.36' | 15.0" Round Culvert L= 61.0' Ke= 0.500 | | | | | Inlet / Outlet Invert= 579.36' / 578.98' S= 0.0062 '/' Cc= 0.900 | | | | | n= 0.012, Flow Area= 1.23 sf | | #2 | Device 1 | 579.36' | 13.2" Vert. Orifice/Grate C= 0.600 | | #3 | Device 2 | 579.35' | 12.3" Vert. Orifice/Grate C= 0.600 | | #4 | Device 2 | 581.40' | 10.0" Vert. Orifice/Grate C= 0.600 | | #5 | Device 2 | 582.00' | 4.0' long x 2.50' rise Sharp-Crested Rectangular Weir | | | | | 2 End Contraction(s) 3.0' Crest Height | Primary OutFlow Max=8.25 cfs @ 12.21 hrs HW=583.16' TW=579.31' (Dynamic Tailwater) 1=Culvert (Passes 8.25 cfs of 10.23 cfs potential flow) T—2=Orifice/Grate (Orifice Controls 8.25 cfs @ 8.68 fps) **─3=Orifice/Grate** (Passes < 7.21 cfs potential flow) **-4=Orifice/Grate** (Passes < 3.04 cfs potential flow) -5=Sharp-Crested Rectangular Weir (Passes < 16.10 cfs potential flow) - NOTES: 1. THE MATERIALS, METHODS, AND WORKMANSHIP OF ALL SEWER, DRAIN, AND WATER PIPES PROPOSED HEREON, INCLUDING ALL WORK WITHIN THE PUBLIC STREETS, TRENCHES AND PAZEMENT PATCHES, SHALL COMPLY WITH THE STANDARD DETAILS AND SPECIFICATIONS OF THE WORGESTER DEPARTMENT OF PUBLIC WORKS. 2. UNLESS OTHERWISE NOTED, THE CONSTRUCTION MATERIALS DESCRIBED HEREIN REFER TO THE MASSACHUSETTS DOT, HIGHWAYS AND BRIDGES, 3. PAVEMENT REPAIRS IN THE DRIVE ASLES SHALL BE HOT MIX ASPHALT CONCRETE, TYPE I, 1-1/2" TOP COURSE S\"AGGREGATE, OVER 2-1/2" DENSE BINDER, INTERMEDIATE AGGREGATE. (M3.11.00) 3. PAVEMENT REPAIRS WITHIN PARKING SPACES SHALL BE HOT MIX ASPHALT CONCRETE, TYPE I, 1" TOP COURSE S\"AGGREGATE, OVER 2" DENSE BINDER, INTERMEDIATE AGGREGATE. (M3.11.00) 4. FLOWABLE FILL IN ROAD TRENCHES SHALL MEET THE REQUIREMENTS OF THE CITY OF WORGESTER DEPARTMENT OF PUBLIC WORKS. - DEPARTMENT OF PUBLIC WORKS. CEMENT CONCRETE SHALL BE 4,000 PSI, ¾" AGGREGATE, MIN 610 LBS CEMENT PER CY (M4.02.00) REFER TO LANDSCAPE DRAWINGS FOR SOIL PREPARATION, PLANTINGS, SEED MIX, AND DENSE MIX SURFACING SPECIFICATIONS. DRAINAGE PIPE SHALL BE DR18PVC FROM CATCH BASIN TO MANHOLE AND REINFORCED CONCRETE PIPE ELSEWHERE. - BASIN 10 MANHOLE AND REINFORCED CONCRETE PIPE ELSEWHERE. 8. SANTARY SEWER PIPE OUTSIDE THE BUILDING ENVELOPE SHALL BE SDR35 PVC, CONNECTIONS TO EXISTING SERVICE SHALL BE MADE IN THE MANNER AND WITH MATERIALS ACCEPTABLE TO THE - WORCESTER DPW. 9. FIRE PROTECTION WATER SERVICE SHALL BE INSIDE THE BUILDING. 10. DOMESTIC WATER SERVICE SHALL BE INSIDE THE - 10. DOMESTIC WATER SERVICE SHALL BE INSIDE THE BUILDING. 11. TRASH AND RECYCLABLES WILL BE STORED IN CLOSED CONTAINERS IN THE EXISTING LOADING AREA. 12. ALL TREES AND SHRUBS PLANTED SHALL BE ASIAN LONGHORNED BEETLE AND EMERALD ASH BORER RESISTANT VARIETIES. 13. THE IMPERVIOUS AREA IS APPROXIMATELY XXXXX S.F. IN THE EXISTING CONDITION AND APPROXIMATELY XXXXX S.F. IN THE PROPOSED. THOMPSON-LISTON ASSOCIATES, INC. Professional Engineers Professional Land Surveyors Erosion Control Specialists 51 Main Street, Post Office Box 570, Boylston, MA 01505 Telephone 508-869-6151 www.thompsonliston.com 3368 348-1876 DATE: AUGUST 3, 2021 SITE PLAN 6-6-21 DESCRIPTION DEFINITIVE SITE PLAN OF LAND AT 189 MAY STREET WORCESTER, MASSACHUSETTS OWNED BY: NEW ENGLAND REHABILITATION WDRD BOOK 13501 PAGE 193 ASRS MBL 51-014-00025